

Exam Ref 70-779
 Analyzing and Visualizing Data

with Microsoft Excel

Chris Sorensen

Exam Ref 70-779 Analyzing and Visualizing Data with Microsoft Excel

Published with the authorization of Microsoft Corporation by:
 Pearson Education, Inc.

Copyright © 2018 by Pearson Education

All rights reserved. This publication is protected by copyright, and permission must be obtained from
the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in
any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, request forms, and the appropriate contacts within the Pearson
Education Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.
No patent liability is assumed with respect to the use of the information contained herein. Although
every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Nor is any liability assumed for damages resulting from the use
of the information contained herein.

ISBN-13: 978-1-5093-0804-0
 ISBN-10: 1-5093-0804-0

Library of Congress Control Number: 2018943933
 1 18

Trademarks

Microsoft and the trademarks listed at https://www.microsoft.com on the “Trademarks” webpage are
trademarks of the Microsoft group of companies. All other marks are property of their respective
owners.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The authors, the
publisher, and Microsoft Corporation shall have neither liability nor responsibility to any person or
entity with respect to any loss or damages arising from the information contained in this book or
programs accompanying it.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Editor-in-Chief
 Brett Bartow

Senior Editor
 Trina MacDonald

http://www.pearsoned.com/permissions/
https://www.microsoft.com/
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

Development Editor
 Rick Kughen

Managing Editor
 Sandra Schroeder

Senior Project Editor
 Tracey Croom

Editorial Production
 Backstop Media

Copy Editor
 Liv Bainbridge

Indexer
 Julie Grady

Proofreader
 Katje Richstatter

Technical Editor
 Daniil Maslyuk

Cover Designer
 Twist Creative, Seattle

I dedicate this book to my wife, Joely, my daughter Camryn,
and my son Murphy. Their love, support and encouragement
had no bounds through what was one of the most
challenging projects I have ever worked on.

—CHRIS SORENSEN

Contents at a glance

Acknowledgements

Introduction

Important: How to use this book to study for the exam
CHAPTER 1 Consume and transform data by using Microsoft Excel
CHAPTER 2 Model data
CHAPTER 3 Visualize data

Index

Contents

Acknowledgements
Introduction

Organization of this book
Microsoft certifications
Microsoft Virtual Academy
Quick access to online references
Errata, updates, & book support
Stay in touch
Important: How to use this book to study for the exam

Chapter 1 Consume and transform data by using Microsoft Excel
Skill 1.1: Import from data sources

Connect to and import from databases, files, and folders
Connect to Microsoft SQL Azure and Big Data
Import from Excel workbooks
Link to data from other sources
Privacy Levels

Skill 1.2: Perform data transformations
Design and implement basic and advanced transformations
Apply business rules
Change data format to support visualization
Filter data
Format data

Skill 1.3: Cleanse data
Manage incomplete data
Handle data received as a report

Thought experiment

Thought experiment answers
Chapter summary

Chapter 2 Model data
Skill 2.1: Create and optimize data models

Understanding the Excel data model
Get & Transform
Manually enter data
Manage data relationships
Optimize models for reporting

Skill 2.2: Create calculated columns, measures, and tables
Create DAX formulas
Create DAX queries
Create Excel formulas

Skill 2.3: Create Hierarchies
Create date hierarchies
Create business hierarchies
Resolve hierarchy issues

Skill 2.4: Create Performance KPIs
Calculate the actual value
Calculate the target value
Calculate actual-to-target values

Thought experiments
Thought experiment answers
Chapter summary

Chapter 3 Visualize data
Skill 3.1: Create and manage PivotTables

Format PivotTables
Format calculated measures
Filter data
Group and summarize data

Skill 3.2: Create and manage PivotCharts
Select a chart type
Format PivotCharts
Filter data

Skill 3.3: Interact with Power BI
Power BI overview
Import Excel data from Power BI
Manipulate Excel data in Power BI

Thought experiment
Thought experiment answers
Chapter summary

Index

Acknowledgements

I would like to thank the first two members of the Iteration Insights team,
Jane Wood and Emily Gu, for their enthusiasm and contributions as we
worked on this project as a newly formed company. They helped make this
book possible as we worked days, nights, and weekends for months to bring
it all together. I would also like to thank Trina MacDonald for her
encouragement, support, and belief in our team through the process of
writing this book. Writing a book of this magnitude would not be possible
without the contribution of the editing staff of Daniil Maslyuk, Troy Mott,
Rick Kughen, and Christina Rudloff, who sifted through the many versions
of our materials to ensure technical and grammatical accuracy. Their
insights and contributions were appreciated.

About the author

CHRIS SORENSEN, MCSE (Data Management and Analytics) and MCT,
is the Founder and President of Iteration Insights Ltd. He is a consultant,
architect, educator, and coach who has been working in the Analytics space
for nearly 20 years. Over his career, he has provided strategic and
architectural advisory services to many clients and most recently he has
been involved with leading numerous Power BI and Excel PowerPivot
projects. He has evangelized both Excel and Power BI with Microsoft since
July 2015. Follow him on both Linkedin and Twitter as @wjdataguy.

Introduction

The 70-779 exam is designed for both Business Intelligence developers and
Business power users that have used Excel for many years to help support
Analytics in an organization. The book is an even split between the skills
needed to Consume and Transform Data, Model Data, and then Visualize
Data.

In the Consume and Transform Data chapter the focus is on the sources
that Excel can connect with for data, and then how to transform data using
the Power Query Editor. It is important to understand the M language that
underlies the Power Query Editor and is generated when performing
transform tasks using the GUI.

The chapter on Modeling Data turns the focus to the Excel Data Model to
build the necessary relationships that glue the data model together, and the
how to optimize it for reporting. Next, we look at how to extend the model
and make it easy to consume for users by utilizing DAX, KPIs, and
Hierarchies.

When Visualizing data, we spend time considering PivotTables and
PivotCharts as the two primary methods in Excel for presenting data.
Lastly, you will spend time investigating how to interact with Power BI as
an additional means for distributing content to users.

This book covers every major topic area found on the exam, but it does
not cover every exam question. Only the Microsoft exam team has access to
the exam questions, and Microsoft regularly adds new questions to the
exam, making it impossible to cover specific questions. You should
consider this book a supplement to your relevant real-world experience and
other study materials. If you encounter a topic in this book that you do not
feel completely comfortable with, use the “Need more review?” links you’ll
find in the text to find more information and take the time to research and
study the topic. Great information is available on MSDN, TechNet, and in
blogs and forums.

Organization of this book

This book is organized by the “Skills measured” list published for the exam.
The “Skills measured” list is available for each exam on the Microsoft
Learning website: http://aka.ms/examlist. Each chapter in this book
corresponds to a major topic area in the list, and the technical tasks in each
topic area determine a chapter’s organization. If an exam covers six major
topic areas, for example, the book will contain six chapters.

Microsoft certifications
Microsoft certifications distinguish you by proving your command of a
broad set of skills and experience with current Microsoft products and
technologies. The exams and corresponding certifications are developed to
validate your mastery of critical competencies as you design and develop,
or implement and support, solutions with Microsoft products and
technologies both on-premises and in the cloud. Certification brings a
variety of benefits to the individual and to employers and organizations.

MORE INFO ALL MICROSOFT CERTIFICATIONS
For information about Microsoft certifications, including a full list of
available certifications, go to http://www.microsoft.com/learning.

Check back often to see what is new!

Microsoft Virtual Academy
Build your knowledge of Microsoft technologies with free expert-led online
training from Microsoft Virtual Academy (MVA). MVA offers a
comprehensive library of videos, live events, and more to help you learn the
latest technologies and prepare for certification exams. You’ll find what you
need here:

http://www.microsoftvirtualacademy.com

Quick access to online references
Throughout this book are addresses to webpages that the author has
recommended you visit for more information. Some of these addresses (also
known as URLs) can be painstaking to type into a web browser, so we’ve

http://aka.ms/examlist
http://www.microsoft.com/learning
http://www.microsoftvirtualacademy.com/

compiled all of them into a single list that readers of the print edition can
refer to while they read.

Download the list at https://aka.ms/examref779/downloads

The URLs are organized by chapter and heading. Every time you come
across a URL in the book, find the hyperlink in the list to go directly to the
webpage.

Errata, updates, & book support
We’ve made every effort to ensure the accuracy of this book and its
companion content. You can access updates to this book—in the form of a
list of submitted errata and their related corrections—at:

https://aka.ms/examref779/errata
If you discover an error that is not already listed, please submit it to us at

the same page.
If you need additional support, email Microsoft Press Book Support at

mspinput@microsoft.com.
Please note that product support for Microsoft software and hardware is

not offered through the previous addresses. For help with Microsoft
software or hardware, go to http://support.microsoft.com.

Stay in touch
Let’s keep the conversation going! We’re on Twitter:
http://twitter.com/MicrosoftPress.

https://aka.ms/examref779/downloads
https://aka.ms/examref779/errata
mailto:mspinput@microsoft.com
http://support.microsoft.com/
http://twitter.com/MicrosoftPress

Important: How to use this book to study for the
exam
Certification exams validate your on-the-job experience and product
knowledge. To gauge your readiness to take an exam, use this Exam Ref to
help you check your understanding of the skills tested by the exam.
Determine the topics you know well and the areas in which you need more
experience. To help you refresh your skills in specific areas, we have also
provided “Need more review?” pointers, which direct you to more in-depth
information outside the book.

The Exam Ref is not a substitute for hands-on experience. This book is
not designed to teach you new skills.

We recommend that you round out your exam preparation by using a
combination of available study materials and courses. Learn more about
available classroom training at http://www.microsoft.com/learning.
Microsoft Official Practice Tests are available for many exams at
http://aka.ms/practicetests. You can also find free online courses and live
events from Microsoft Virtual Academy at
http://www.microsoftvirtualacademy.com.

This book is organized by the “Skills measured” list published for the
exam. The “Skills measured” list for each exam is available on the
Microsoft Learning website: http://aka.ms/examlist.

Note that this Exam Ref is based on this publicly available information
and the author’s experience. To safeguard the integrity of the exam, authors
do not have access to the exam questions.

http://www.microsoft.com/learning
http://aka.ms/practicetests
http://www.microsoftvirtualacademy.com/
http://aka.ms/examlist

CHAPTER 1
 Consume and transform data by using

Microsoft Excel

As a business intelligence professional, chances are you have spent a lot of time
wrangling with data that comes in many shapes and sizes and from a multitude of
different sources. This is a challenge that most analysts face daily. Data is scattered,
and sometimes not managed properly, which complicates the process of making data
easily accessible for analytics. The task of consuming and transforming data in Excel
has long been one of the hardest, and yet most important, skills for a data analyst to
master as they prepare data sets for consumption and presentation. After all, it is all
about the data. If your data is of a poor degree of quality or it is not structured
properly, it can lead to challenges when using your data for meaningful and reliable
analysis.

IMPORTANT
 Have you read page xix?

It contains valuable information regarding the skills you need to pass the exam.

For years Excel professionals have relied upon their mastery of advanced Excel
functions such as: VLOOKUP, IF, FIND, CLEAN, and SUBSTITUTE, on top of
traditional data import means.

In this chapter, start by looking at the different sources that Excel can connect into
using the newly organized Get & Transform Data functionality. Once you have
connected to a source, we turn your attention to transforming the data and performing
any cleansing that is deemed appropriate for making your data sets easier to navigate
and ultimately more reliable.

The focus of this chapter is to connect, transform, and cleanse data into individual
tables using what is now known as Get & Transform. In Chapter 2 “Model data,” we
dive deeper into the Data Model and discuss data modeling best practices,
optimization techniques, and how to set up your model for a rich end-user self-service
experience. In Chapter 3 “Visualize data,” you focus on using the data in the data
model for reporting within Excel.

Skills in this chapter:
Skill 1.1: Import from data sources

Skill 1.2: Perform data transformations
Skill 1.3: Cleanse data

Skill 1.1: Import from data sources
One of the great things about Power Query, which is part of the Get & Transform
functionality, is that the process of connecting to source systems and cleansing data
has been made substantially easier to perform and maintain over traditional Excel
techniques.

The first stop when getting data is to become familiar with the Excel 2016 ribbon. In
this section, you focus on connecting to data sources via the Get & Transform Data
group in the Data tab. When you connect to any source, you have many options. First,
you can just create a query, which is a stored definition. You can load data into an
Excel table, or you can also choose to load to the Data Model. Which method you
choose depends on how you will be using your data. For purposes of the exam, we
focus on loading data to the Excel Data Model.

This section covers how to:

Connect to and import from databases, files, and folders
Connect to Microsoft SQL Azure and Big Data
Import from other Excel workbooks
Link to data from other sources

Connect to and import from databases, files, and folders
Databases and files are some of the most common data sources used when connecting
to data for analytics purposes. In this Skill, we also connect to a folder structure, which
is a very convenient way to acquire data from multiple files that share the same format.

Excel can connect to the following database sources:

SQL Server database
Access database
SQL Server Analysis Services database
Oracle database
IBM DB2 database
MySQL database
PostgreSQL database
Sybase database
Teradata database

SAP HANA database

Analytics in Microsoft Excel—Then
Before diving into the new methods that are available in Excel for making the overall
process of data analysis easier (which is the focus of this book), we need to look at
how Excel used to work.

Traditionally, you had to combine data you were acquiring from external systems
into single objects, such as an Excel data table, so you could use PivotTables to slice
and dice or to build other objects such as PivotCharts. This method typically posed a
few problems.

First, you would often end up with mixed grains of data in a table (for example,
an order total repeating with each order line item) that would need to be known
by the consumer at analysis time to prevent producing incorrect results.
Second is that you typically needed to do some sort of workaround to deal with
the one million row limit in Excel. This often involved aggregating data (e.g.
from day-level to month-level), which causes loss of granularity, and this meant
your analysis could only go to the month level, and your users would be asking
for day-level analysis. The very nature of analytics is that you ideally want the
lowest level of detail in your models to support “the next question” that users
inevitably ask. Million-plus row datasets are now a reality.
Third is that combining, transforming, and cleaning data is a challenge. Pure
Excel functions, such as VLOOKUP(), typically do not perform well with larger
datasets. Mixed into this problem is that to do more complex transformations,
users often found themselves injecting VBA or SQL into their solutions that
drove up complexity.
Lastly, the sources that were available were limited. Today, businesses want to
mashup data from many different internal and external systems. This is no easy
task with traditional Excel methods.

Analytics in Microsoft Excel—Now
In Excel 2010, a new feature—called Power Pivot—was introduced along with Power
Maps, Power Query, and Power View. Microsoft was making a concerted effort to
improve analytical capabilities within Excel. When Power Pivot was introduced, Excel
expert Bill Jellen declared it as the greatest thing to happen to Excel in 20 years. That
is high praise!

Suddenly, the 1,048,576-row limit in Excel was gone and you can now import
considerably larger data sets into PowerPivot, which is also known as the Excel Data
Model. More on this in Chapter 2 in the section named “Understanding the Excel data
model..” And data did not have to be mashed into a single table as it had before so

PivotTables could query the data. Also, Microsoft introduced Power Query, which
made importing, transforming, and cleansing data much easier and more performant.

A Data Model is a new approach for integrating data from multiple tables, relating
those tables, and building a queryable model within an Excel workbook. Within Excel,
Data Models are used transparently, providing tabular data that can be consumed by
PivotTables and PivotCharts. The engine that drives this is known as xVelocity which
is the same in-memory engine that drives SQL Server Analytics Services Tabular
models.

 EXAM TIP
For those of you who do both Excel and Power BI development, take caution and
remind yourself when taking this exam that you are doing the Excel-based exam. It is
very easy to answer a question from the point of view of a Power BI user because
there are so many similarities. Do not let the differences trick you.

Connecting to sources
Now, explore the different sources you can acquire data from using Excel Get &
Transform. To connect to a data source, Click the Data tab and then on the Get &
Transform Data group, click Get Data.

The menu options shown in Figure 1-1 categorize the data sources into the
following groupings. From File > From Database > From Azure > From Online
Services and From Other Sources.

FIGURE 1-1 The Get Data Function

There are three ways to analyze data in Excel. You can import data into Excel using
the Data Model, or you can use traditional Excel means, such as an Excel table. If you
are using Analysis Services, you also have the option to connect directly into the
database and query information live. This allows you to interact with the data without
importing it into the spreadsheet, which keeps workbook size down and might also
improve performance.

The examples in this guide indicate which data sources to use when following the
hands-on examples. In Skill 1.1, you use many different data sources. Following along
is optional, but doing so helps reinforce the concepts. In Skills 1.2 and beyond, you
move to your local file system and use files that are available on the book’s companion
site, which simplifies the overall process.

 EXAM TIP
The data connectors that are available in Get & Transform Data are important. You do
not need to know the details of each system they connect to, but you should know

enough about the specifics of the connector from the Get & Transform perspective
regarding what can be configured and where common problems lie.

Connecting to SQL Server
One of the most popular enterprise relational database management systems in use
today is Microsoft SQL Server. In this example, we connect to an
AdventureWorks2016 Database to obtain the following two tables:

[AdventureWorks2016].[Sales].[SalesOrderHeader]
[AdventureWorks2016].[Sales].[SalesOrderDetail]

NOTE DOWNLOADING THE ADVENTUREWORKS DATABASES

Throughout the book, you will be interacting with AdventureWorks data through a
SQL Database and both Analysis Services Multidimensional and Tabular models.
The files and installation instructions are available on the GitHub sites listed
below:

The AdventureWorks SQL Database files named AdventureWorksDW2016.bak
and AdventureWorks2016.bak can be downloaded from
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks.

The AdventureWorks Multidimensional and Tabular Models named adventure-
works-multidimensional-model-full-database-backup.zip and adventure-works-
tabular-model-1200-full-database-backup.zip can be found at
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks-
analysis-services.

To Connect to a Microsoft SQL Server database, follow these steps:

1. Select Data > Get Data > From Database > From SQL Server Database. You
are then presented with the window in Figure 1-2. Your SQL Server Database
dialog may be contracted and if so, click Advanced Options to mirror Figure 1-
2. Now type the name of your Server and leave all other defaults. Do not click
OK until you have read the following discussion of the options in this dialog.

https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks-analysis-services

FIGURE 1-2 The SQL Server Database connection configuration dialog

There are several configurations that can be made in the dialog:

Server Here you specify a mandatory server name that you wish to connect
to with an option to include the port number.
Database (Optional) If you know the name of the database you want to
connect to, type the name here. If you leave the field blank, when you move
to the Navigator dialog as shown in Figure 1-6; you are allowed to choose
from a list of databases for which your credentials have access.
If you expanded the Advanced options, you can configure a few more
properties:
Command Timeout In Minutes(Optional) This allows the SQL query to
time out should the query not return in the allotted timeframe.
SQL Statement (Optional, Requires Database) In this text box, you can
write a Native Database Query. This can be very helpful in situations in
which you already have a complex query written that you know cannot be
written in the Query Editor, or when you simply do not want to repeat the
work. If you choose this option, you are prompted to add a value in the

Database field. This query may cross databases, despite the Database field
indicating a single database.
Include Relationship Columns If chosen, you can subsequently choose the
Select Related Tables option in Figure 1-7. If not, the metadata that drives
the relationships is not included and no related tables are found, even if you
know referential integrity exists at the database layer. The default for this
option is selected.
Navigate Using Full Hierarchy If chosen, you can navigate the Hierarchy
of SQL Server objects from the server down to databases, then schemas, and
finally objects within schemas. If disabled, you navigate from server to
databases, and then all objects from all schemas. The default for this
selection is cleared.
Enable SQL Server Failover Support If chosen, your query can take
advantage of local high availability through the server-instance level. The
default selection is cleared.

NEED MORE REVIEW? IMPORT DATA FROM DATABASE
USING NATIVE DATABASE QUERY
For more information, see the following article, “Import Data from Database
using a Native Database Query.”

https://support.office.com/en-us/article/Import-Data-from-Database-using-
Native-Database-Query-Power-Query-f4f448ac-70d5-445b-a6ba-
302db47a1b00.

2. When you are done configuring the options in Figure 1-2, Click OK. If this is
your first time connecting to this source, the dialog box in Figure 1-3 appears.
Here you enter the credentials to connect to the database. If you are using your
Windows credentials, make the appropriate selection. If you are going to connect
using SQL Server Credentials, click the Database tab and Figure 1-4 appears,
where you can enter those credentials. Click Connect after you have specified
the credentials.

https://support.office.com/en-us/article/Import-Data-from-Database-using-Native-Database-Query-Power-Query-f4f448ac-70d5-445b-a6ba-302db47a1b00

FIGURE 1-3 SQL Server Database Windows-based credentials

FIGURE 1-4 SQL Server Database SQL User credentials

3. If this is the first time connecting to the specified source, you might be presented
with a subsequent dialog box that prompts you to select the authentication mode
for the connection. The database in this example does not support encryption, so
the dialog shown in Figure 1-5 appears. If you have the option presented to you
(in this example we do not) and you do not want to connect using an encrypted
connection, clear this check box, and then click Connect or OK.

FIGURE 1-5 Encryption Support dialog

NEED MORE REVIEW? ENCRYPTED CONNECTIONS
If your connection supports encryption and you clear the Encrypt connection
check box, or your database does not support encryption, as in Figure 1-5,
data is transferred from SQL Server to Excel in plain text. A malicious user
might be able to intercept and examine unencrypted data.

4. You are brought to the Navigator dialog as shown in Figure 1-6. Because you
did not type a database name in Figure 1-2, you see the server name followed by
a list of databases. Expand out the AdventureWorks2016 database and find the
two tables that you named at the beginning of the Connect to a Microsoft SQL
Server database exercise.

FIGURE 1-6 SQL Server Object Navigator at the server and database level

5. Navigate down the tree to the specific object that you need, as in Figure 1-7.
Notice that SQL tables, views, table valued functions, and scalar functions are
visible in the object hierarchy. Also, examine your options on this screen:

The search box as highlighted by the first callout bubble (callout area 1) is
useful if you know the name or part of the name of the object that you want
to find, and you have a large number of objects.
Callout area 2 shows the two tables you want. The problem is that at this
point, you can only select one table. To solve this, click the Select Multiple
Items check box that appears in callout area one; doing so allows you to
choose multiple tables. You can now select the tables you wanted.

In callout area 3, notice that you can select Select Related Tables. If you
selected Include Relationship Columns in Figure 1-2, this function
performs as expected. This uses any referential integrity that is in the
database to help determine what the related tables are. You do not need to
choose this option as you only need the two tables mentioned in the opening
of the exercise.

FIGURE 1-7 SQL Server Object Navigator expanded to the objects you want

6. Now that you have the two tables chosen, you can explore the options available
in callout area 4 of Figure 1-7. If you are ready to transform and cleanse the data
in the selected tables, click the Edit button to open the Query Editor. Do not click
Edit now, because we will do that in Skills 1.2 and 1.3. In this section, we
explore the Load button. Click on the drop-down arrow on the right side of the
Load button to open the dialog box shown in Figure 1-8.

FIGURE 1-8 Load Options

7. From here, click Load to open the Import Data dialog in Figure 1-9. Choose
whether to load your data and where to store it in the Import Data dialog box.
The first three radio buttons under Select How You Want To View This Data In
Your Workbook (Table, PivotTable Report, and PivotChart) all load data
directly into the Excel workbook. Notice that if you select one of the first three
radio buttons, you also have the option of loading data to the data model by
checking Add This Data To The Data Model. Be aware that if you choose one
of the first three options and check the Add This To The Data Model option,
you double up the data in your workbook because it is stored in both the object
chosen by your radio box selection and the data model. It is not recommended to
load data to both locations; in fact, now you are encouraged to load to the data
model. You also have the Only Create Connection radio box, which will not
load the data anywhere. For our example, choose Only Create Connection and
click OK to create the connection in Excel as shown in Figure 1-10.

8. Once you have reviewed the figures below, you can close your Excel
spreadsheet.

FIGURE 1-9 Import Data options

NOTE DEFAULT QUERY LOAD SETTINGS
The default query load settings can be configured in the Query Editor. Refer to the
article below that discusses the default behavior and configuration options:

https://support.office.com/en-us/article/Add-a-query-to-an-Excel-worksheet-
Power-Query-ca69e0f0-3db1-4493-900c-6279bef08df4#setdefault.

https://support.office.com/en-us/article/Add-a-query-to-an-Excel-worksheet-Power-Query-ca69e0f0-3db1-4493-900c-6279bef08df4#setdefault

FIGURE 1-10 Queries & Connections Listing

Microsoft Access
Access is a popular desktop management system in many organizations. To connect to
an Access database follow the steps below:

1. To connect to Access, select the Data tab > Get Data > From Database > From
Microsoft Access Database.

2. You are presented with a Windows Import Data dialog box where you can
navigate to the database file to which you want to connect. Choose the
AdventureWorks2014 Access database in the book supplied folder at \Chapter
1\Access\ and click Open

3. Once you have chosen the database, you are presented with the Navigator dialog
box as shown in Figure 1-11.

4. You may click Cancel.

FIGURE 1-11 Access Database Object Navigator

If you had tried to connect to an Access database with a password, you would have
encountered the error displayed in Figure 1-12.

FIGURE 1-12 Unable to connect to a password-enabled Access Database

Analysis Services

Analysis Services provides dimensional data that is well suited for business reports
and client applications such as Power BI, Excel, Reporting Services, and other data
visualization tools. Data in Analysis Services can be structured in one of two ways:

Multidimensional OLAP cubes
Tabular models

You have two options for analyzing data in Analysis Services. First, you can use a
live online connection which enables you to slice and dice data in the cube in a
PivotTable or PivotChart without loading the data into your workbook. Second, you
have the option to import the data from the cube into your workbook.

If you installed the Tabular and Multidimensional Adventure works databases as
directed earlier in the Note titled Downloading the Adventure Works databases, you
can follow along with this example. Follow these steps to Connect to Analysis
Services using a live connection:

1. Click Get Data > From Database > From Analysis Services.
2. On the opening screen of the Data Connection Wizard in Figure 1-13, choose a

Server Name and add type your Log On Credentials. In the Server Name field,
you can either choose to connect to a tabular or multidimensional instance of
Analysis Services. Click Next once you are finished.

FIGURE 1-13 Data Connection Wizard to connect to SSAS Server

3. In this example, you connect to a tabular instance, which means you will see the
Data Connection Wizard screen in Figure 1-14, where you choose the database

to which you want to connect. Choose Adventure Works Internet Sales Model
and click Next.

FIGURE 1-14 Select Database and Table/Cube to connect to

4. Next, you Save Data Connection File and Finish in the dialog shown in Figure 1-
15. Doing saves your data as an Office Data Connection File. You provide both a
File Name and a Friendly Name along with any Search Keywords, which help
with searchability. Also, click Authentication Settings to modify those settings
if needed. Once you have the values configured, click Finish and the Import Data
dialog will appear, as shown in Figure 1-16.

FIGURE 1-15 Save Data Connection File and Finish

NEED MORE REVIEW? OFFICE DATA CONNECTION FILES
See the following article for more information on Office Data Connection
Files: https://support.office.com/en-us/article/Create-edit-and-manage-
connections-to-external-data-89d44137-f18d-49cf-953d-d22a2eea2d46.

NEED MORE REVIEW? CONNECTING TO AZURE ANALYSIS
SERVICES
For more about Azure Analysis Services, see the article at
https://docs.microsoft.com/en-us/azure/analysis-services/analysis-services-
odc.

5. In the Import Data dialog as shown in Figure 1-16, notice that you cannot select
to store data in a table or the data model. Recall that with a live connection, no
data is stored in the workbook.

6. Click Cancel.

https://support.office.com/en-us/article/Create-edit-and-manage-connections-to-external-data-89d44137-f18d-49cf-953d-d22a2eea2d46
https://docs.microsoft.com/en-us/azure/analysis-services/analysis-services-odc

FIGURE 1-16 Import Data dialog

Now that you have completed the live connection, you can do the steps to import
data into the workbook:

1. Click Get Data > From Database > From SQL Server Analysis Services
Database (Import).

2. You are presented with the SQL Server Analysis Services Database dialog in
Figure 1-17. Here you are required to enter a Server with an optional port
number and an optional Database. Also, you have an option to create an MDX or
DAX query depending on the type of server to which you are connecting. Once
you are done, click OK.

FIGURE 1-17 SQL Server Analysis Services database connection

3. If this is your first time connecting to this resource, you are prompted to enter
credentials. Enter them and select Connect.

4. In the Navigator dialog in Figure 1-18, you navigate the objects on the server to
which you are connected. From this point, choose to Load to the default location,
Load to a select location, or Edit to begin transforming the data. You can click
Cancel at this point, as this is as far as we will go.

FIGURE 1-18 Analysis Service Object Navigator

NEED MORE REVIEW? GETTING DATA FROM AN ANALYSIS
SERVICES
See this article for more information on how to retrieve data from Analysis
Services: https://support.office.com/en-us/article/Get-data-from-Analysis-Services-
ba86270b-5cc2-4bb9-a21d-8bafc20f0cd3.

Oracle
Follow these steps to connect to an Oracle database:

1. To get data from an Oracle Database, click the Data tab > Get Data > From
Database > From Oracle Database. To connect, you first need to ensure that
you have Oracle client software v8.1.7 or greater on your computer. If not, you
receive the error shown in Figure 1-19.

https://support.office.com/en-us/article/Get-data-from-Analysis-Services-ba86270b-5cc2-4bb9-a21d-8bafc20f0cd3

FIGURE 1-19 Oracle client error

NOTE INSTALLING THE NECESSARY DRIVERS
If you encounter the issue as described in Figure 1-19, you can go to the
following location to learn more about which drivers to install
https://support.office.com/en-us/article/Connect-to-an-Oracle-database-
Power-Query-d7fbd231-a705-4eb7-83b3-a66bfb678395.

2. Once you have resolved the driver issue, you can continue to the Oracle
database dialog box, as shown in Figure 1-20. Here you configure the options
much like when configuring an SQL Server connection. Examine the options
below and click OK when you have it configured properly.

Server Specify the Oracle Server. If a SID is required, it can be specified as
ServerName/SID.
Command Timeout In Minutes (Optional) This allows the SQL query to
time out should the query not return in the allotted timeframe.
SQL Statement (Optional) If you want to import data using native database
query, specify your query here.
Include Relationship Columns If chosen, this allows you to choose the
Select Related Table option as shown in Figure 1-7. If not, the metadata that
drives the relationships are not included and no related tables are found,
even if you know referential integrity exists at the database layer. The
default selection is unchecked.
Navigate Using Full Hierarchy If selected, you can navigate the Hierarchy
of SQL Server objects from the server down to the databases, then schemas,

https://support.office.com/en-us/article/Connect-to-an-Oracle-database-Power-Query-d7fbd231-a705-4eb7-83b3-a66bfb678395

and finally objects within schemas. If it is not selected, you navigate from
the server to the databases, then all objects from all schemas. The default
selection is unchecked.

FIGURE 1-20 Oracle Connection Configuration

3. If the database requires credentials, enter them in the Access A Database dialog
box.

4. Click Connect.
5. There is no need to save your work.

Other Database Management Systems
Excel can connect to many other Database Management Systems (DBMS) outside of
SQL Server, SQL Server Analysis Services, Oracle, and Access. The pattern to
connect repeats through the various DBMS. As seen in the Oracle example, one of the
first roadblocks you might encounter is not having the correct drivers installed to allow
Power Query to make the connection. This error comes even before you have a chance
to specify server names and credentials.

NOTE INFORMATION ON HOW TO CONNECT TO OTHER
DATABASE MANAGEMENT SYSTEMS

For more information on how to connect to other database systems, read the
following article: https://support.office.com/en-us/article/Import-data-from-
external-data-sources-Power-Query-be4330b3-5356-486c-a168-b68e9e616f5a.

Text/CSV
Text and CSV data are very common file types when doing analytics.
Follow these steps to connect to a Text/CSV source:

1. To get data from a text file, click the Data tab > Get Data > From File > From
Text/CSV.

2. When prompted with the Windows Import Data file dialog box, navigate to
\Chapter 1\Advanced Example 1\Append Examples\United States Sales.txt. This
is a tab-delimited file. You are then presented with the dialog shown in Figure 1-
21. Note the following options that you may configure. When complete, click
Cancel.

File Origin Power Query detects the File Origin.
Delimiter Power Query detects the delimiter in use. Available delimiters
are:

Tab
Comma
Colon
Equals Sign
Semicolon
Space
Custom
Fixed

Data Type Detection This is where you choose if and how Power Query
performs data type detection. The options are:

Based on first 200 rows; this is the default
Based on entire dataset
Do not detect data types

https://support.office.com/en-us/article/Import-data-from-external-data-sources-Power-Query-be4330b3-5356-486c-a168-b68e9e616f5a

FIGURE 1-21 Text file configuration

NEED MORE REVIEW? POWER QUERY INTERNATIONALIZATION
For information about Power Query Internationalization, see the following article:
https://support.office.com/en-us/article/Internationalization-Power-Query-
d42b9390-1fff-413f-8120-d7df0ced20b9.

Connect to XML
XML or eXtensible Markup Language has been around for many years and is now a
common format for moving and storing data. It was designed to be both human- and
machine-readable. Follow these steps to Connect to an XML source:

1. Click the Data tab > Get Data > From File > From XML.
2. Find the file in \Chapter 1\XML JSON\XML Internet Orders.xml.
3. When you click Open, the Navigator appears, as shown in Figure 1-22. Here

you can choose which node you would like to process.
4. When complete, click Cancel.

https://support.office.com/en-us/article/Internationalization-Power-Query-d42b9390-1fff-413f-8120-d7df0ced20b9

FIGURE 1-22 XML Navigator

Connect to JSON
JSON (or JavaScript Object Notation) is a lightweight data-interchange format that is
easy for humans to read and write. It is also easy for machines to parse and generate. It
has an advantage over XML in that similar data volumes tend to be much smaller
when wrapped into JSON.

Follow these steps to Connect to a JSON source:

1. Click the Data tab > Get Data > From File > From JSON.
2. Find the file in \Chapter 1\XML JSON\JSON Internet Orders.json.
3. When you click Import in the Import Data dialog box, the Query Editor

appears, as shown in Figure 1-23.

FIGURE 1-23 Initial Query Editor with JSON source

Connect to a folder
It is very common in business scenarios to have multiple files that are divided up
among users in the organization and that are all structured in the same way. The only
difference is the data they contain. Corporate budgeting is a very good example of this.
File structures are tightly controlled by the managers of the budget process. This
control around the structure enables the final data extraction process to occur without
error.

In situations like this, the folder connector is a very useful way to use multiple files
in one operation, placing them into a single table. The number of files can go up or
down, and Power Query grabs all the files that are in the folder. The criteria for this:

All files must reside in the same folder.
All files must share the same structure.

Follow these steps to Connect to a Folder source:

1. Click the Data tab > Get Data > From File > From Folder.
2. In the Folder dialog, click Browse.
3. In the Browse For Folder dialog box, navigate to the folder at \Chapter

1\Folder\. Once you have the folder, click OK.
4. In the Folder dialog, now click OK.

5. When this is complete, you will be presented with the dialog shown in Figure 1-
24 where you can see the six files that are in the folder. Click Combine >
Combine & Edit to bring them into one table.

FIGURE 1-24 Files in the folder that was chosen

6. From here you are brought to the Combine Files dialog in Figure 1-25. Here you
choose:

Example File Choose which file to use as the sample file.
Select The Object To Be Extracted From Each File I have chosen Sheet 1
from our example.
Skip Files With Errors This option allows you to skip any files that contain
errors.

FIGURE 1-25 Combine Files dialog box

7. Click Cancel at this point. In Skill 1.2, you go through an end-to-end example on
how to perform these steps along with Transforms.

Connect to a SharePoint folder
Fundamentally, connecting to a folder and a SharePoint folder are similar. SharePoint
typically provides a more flexible and portable means for sharing files than a
traditional file share or folder. Follow these steps to Connect to a SharePoint Folder
source:

1. Click the Data tab > Get Data > From File > From SharePoint Folder.
2. On the SharePoint folder dialog, enter the root URL for the SharePoint Site, not

including subfolders. Click OK when done.
3. In the next screen, select Anonymous > Windows > or Microsoft Account as

seen in Figure 1-26. Here you can also indicate at which level in the SharePoint
environment the permissions will apply. There are three levels where permissions
can be applied in this example.

4. You may click Cancel.

FIGURE 1-26 SharePoint site folder configuration

Connect to Microsoft SQL Azure and Big Data
Azure data sources are growing in popularity due to their total cost of ownership, their
scalability, and their flexibility. These sources are used by more and more
organizations, so the need to easily access data increases. Excel can connect to the
following Azure sources:

Azure SQL Server
Azure SQL Data Warehouse
Azure Data Lake Store
Azure HDInsight
Azure BLOB
Azure Table Storage

NOTE AZURE SUBSCRIPTION
If you choose to try any of the examples in this section, you need access to Azure.
For this, you can set up a free trial account at the following location:
https://azure.microsoft.com/en-ca/free/.

Azure SQL and Azure SQL Data Warehouse
Connecting to Azure SQL and Azure SQL Data Warehouse is similar to connecting to
SQL Server. To connect, you need to use the fully qualified name of your server,
which is available in your Azure portal. The format is: <your database
name>.database.windows.net. Additionally, you need to ensure that the firewall rules
are correctly configured to access the databases once they are set up.

Azure Data Lake

https://azure.microsoft.com/en-ca/free/

Azure Data Lake is a scalable cloud-based data storage and analytics service. It gives
users fast and efficient alternatives to deploying and managing big data infrastructure.
Data of all shapes and sizes can be stored within Azure Data Lake, and if data
processing is needed, you can take advantage of Azure Data Lake Analytics.

In this example, use the same example that is used throughout the book to show
bringing in data from files and folders.

FIGURE 1-27 Azure Data Lake folder explorer

Follow the steps below to Connect to Azure Data Lake:

1. To get data from an Azure Data lake, click the Data tab > Get Data > From
Azure > From Azure Data Lake Store.

2. You are presented with the Azure Data Lake Store dialog box shown in Figure
1-28. To connect, enter the following information and then click OK:

URL adl://<your data lake store name>.azuredatalakestore.net/
The URL can be:

The root directory of your data lake store
A specific folder
A single file

FIGURE 1-28 Azure Data Lake Store URL dialog box

3. You are then prompted to connect with an organizational account that has access
to the resource as shown in Figure 1-29. Sign in with those credentials and click
Connect when you are done. You are presented with the dialog shown in Figure
1-30.

FIGURE 1-29 Azure Data Lake Store Sign in dialog Box

4. You may click Cancel.

FIGURE 1-30 Azure Data Lake Store root level folder

NEED MORE REVIEW? CONNECTING EXCEL TO AZURE DATA
LAKE STORAGE

Consult the following article for more details on how to work with Azure Data
Lake:
https://blogs.msdn.microsoft.com/azuredatalake/2017/07/19/analyze-data-in-
azure-data-lake-store-using-familiar-and-powerful-Excel-2016/.

Import from Excel workbooks
Data can be imported from workbooks external to the one that you are working in, as
well as data from within your current workbook. For example, you can have tables and
ranges in your workbook that you want to import. Now, it is time to see this option in
an example.

Follow these steps to Get Data from a Table/Range:

5. With Excel closed, open the workbook at \Chapter 1\Excel\Table Range
Example.xlsx as you would normally open and xlsx file.

6. In this file, you can see two objects: an Excel table named tblSales and a Named
Range, rngRegions.

7. First, highlight any part of the Excel table and then click Get Data > From
Other Sources > From Table/Range. The Query Editor appears where you can
perform any shaping. Click Close & Load to move back to Excel.

8. Now highlight the entire range and click Get Data > From Other Sources >
From Table/Range. You are are taken to the Query Editor where you can
perform any shaping. Click Close & Load to move back to Excel.

9. Notice how both the query names have been picked up from the name of the
Excel object that you have imported.

Link to data from other sources
There are many other data sources to which Power Query can connect. Below are the
categories of other sources and the specific sources to which you can connect.

From Online Services
With the popularity of online applications, more and more data now resides in cloud-
based solutions. For example, in a CRM-based Analytics scenario, some customer data
might reside in Dynamics 365 CRM, and additional information might reside in
Facebook. Power Query allows you to mash these sources together to help enable a
360-degree view of your customer. Get & Transform functionality makes it easy to
connect to the following online sources:

SharePoint Online List
Microsoft Exchange Online
Microsoft Dynamics 365 (online)

https://blogs.msdn.microsoft.com/azuredatalake/2017/07/19/analyze-data-in-azure-data-lake-store-using-familiar-and-powerful-Excel-2016/

Facebook
Salesforce Objects
Salesforce Reports

From Other Sources
There are many other connectors available, such as the following:

Web
Microsoft Query
SharePoint List
OData Feed
Hadoop File (HDFS)
Active Directory
Microsoft Exchange
ODBC
OLDB
Blank Query

Power Query can connect to Web sources
When doing analytics, you might find the need to acquire data from external sources to
augment solutions. For example, you might need population data as part of your work.
If your organization does not have this available internally, you can get it yourself and
mash it in. For this example, look at getting population data from Wikipedia by
following these steps to connect to a Web source: Get Data > From Other Sources >
From Web.

1. You are presented with the From Web dialog box shown in Figure 1-31. If you
choose the Basic option, you are asked to provide type URL. For this demo use
the following URL and click OK:
https://en.wikipedia.org/wiki/List_of_countries_by_population_(United_Nations)
.

https://en.wikipedia.org/wiki/List_of_countries_by_population_(United_Nations)

FIGURE 1-31 Web URL configuration dialog box

2. In the Access Web content dialog shown in Figure 1-32, you configure
credentials to access the data. You can choose Anonymous, but you also have the
following options to choose from, depending on the location of the web resource
you are trying to connect to:

Anonymous
Windows
Basic
Web API
Organizational account

FIGURE 1-32 Web Content configuration dialog box

3. Also, note that you need to use Select Which Level To Apply These Settings To.
If you click the drop-down box in the Access Web Content dialog box shown in
Figure 1-32, you can see three levels where security can be applied: the root of
Wikipedia, the next level down in the folder structure (wiki), or the actual web
page itself. This is discussed more in the section on Privacy Levels in Power
Query. For now, leave it at the root level, and click Connect.

4. You should now see the Navigator window as shown in Figure 1-33. Power
Query inspects the web page for suitable structures to import and has found three
objects that are listed. Click through each to see what they look like. You need to
select Countries And Areas Ranked By Population In 2017. Note that when you
have this highlighted, you can toggle between the Table View and Web View on
the right of the window. This is helpful in situations in which there are many
options, and you want to preview what you are selecting.

5. Go ahead and click Edit to move the Query Editor to do further processing, or
you may click Cancel.

FIGURE 1-33 Web Page Object Navigator

Blank Query
You can use the Blank Query to create advanced queries that use the M language
within Power Query. M provides a wide variety of formulas that are used to build
complex expressions and transformation steps.

When you choose a Blank Query, you are immediately taken to the Query Editor
where you can begin to build out your query using the various wizards, or you can go
directly into the Advanced Editor to code your steps. More information about the
Advanced Editor is provided in Skill sections 1.2 and 1.3.

Privacy Levels
Now that you have worked with several data sources, it is worth discussing Privacy
Levels. Privacy Levels are rules that define isolation levels between data sources.
These rules might affect performance of queries, and in some cases, your queries are
not executed at all if Privacy Levels conflict between sources.

To view the current Privacy Levels in your workbook, click Get Data > Data
Source Settings. Note, this can be done from the Query Editor as well. You should see
the Data source settings dialog shown in Figure 1-34. From there, you select the
multidimensional source and click Edit Permissions. Note that you can also change the
Credential used at this point. You have the option to change Privacy Level to the
following values:

None
Public
Organizational
Private

FIGURE 1-34 Data source settings

To view the settings on how your workbook treats privacy levels, click Get Data >
Query Options. The Query Options dialog will appear as shown in Figure 1-35.

FIGURE 1-35 Privacy settings in Query options

NEED MORE REVIEW? PRIVACY LEVELS
For a more in-depth discussion around Privacy Levels, consult the following
article: https://support.office.com/en-us/article/Privacy-levels-Power-Query-
CC3EDE4D-359E-4B28-BC72-9BEE7900B540.

Skill 1.2: Perform data transformations
Now that you have seen examples of how to connect to the vast array of data sources
that are available in Excel, let’s shift attention to the different methods that are
available to users to transform data using the Query Editor, which is the primary focus
of Skill 1.2 and Skill 1.3.

Rarely is data in the state that you need it to be in for production quality reporting. If
it is, count yourself lucky. If not, the Query Editor has a very rich set of features that
allows users to perform transformations and cleansing activities with ease. You often
hear this referred to as Data Shaping, which has become the more modern term for
Extract Transform and Load (ETL).

The front-to-back process of importing data, performing transformations, and then
visualizing data is highly iterative, and tools such as Excel are well-suited to enable
fast iterations. Data can be taken from front to back, and as it is used at each stage,
feedback can be provided that can be pushed back into earlier steps that make later
steps in the process easier. For example, maybe your model has no easy way in the
first iteration to perform analysis by Year. As this feedback is provided, the data
shaping process can create a Year column, so that is available in the Data Model for
end users. This is a simplistic example, but it is a very common way to iterate on
improving models for widespread usage.

This section covers how to:

https://support.office.com/en-us/article/Privacy-levels-Power-Query-CC3EDE4D-359E-4B28-BC72-9BEE7900B540

Design and implement basic and advanced transformations
Apply business rules
Change data format to support visualization
Filter data
Format data

Design and implement basic and advanced
transformations
In this skill section, we review the methods available in the Query Editor for
performing basic and advanced transformations of your data. The bulk of time in data
shaping is spent taking data tables and fields that come in many shapes and sizes and
preparing them for easy to use and consistent analytics. Many times, when performing
analysis, you are merely happy getting any data, no matter how good or bad it is. You
then take advantage of techniques available to standardize and cleanse the data for use.

For the most part, the visual tools available in the ribbon and menu options more
than cover your transformation needs. However, as you become more advanced with
using the Query Editor you might start diving into the M language that is available for
scripting steps by typing code versus using the GUI commands. The Power Query M
formula language is optimized for building highly flexible data mashup queries. It’s a
functional, case-sensitive language which can be used with Power BI Desktop, Power
Query in Excel, Get & Transform in Excel 2016, Power Apps, and now SQL Server
Analysis Services 2017. Through this Skill, M scripts are highlighted as they are
output from transformations using the GUI because this a great way to gain familiarity
with the language. This is done by first showing the individual lines of code that are
generated with each step. Then you are introduced to the Advanced Editor for viewing
and maintaining the entire script that has been generated by applying transformation
steps to your data.

NOTE QUERY EDITOR AND POWER QUERY
Originally, Query Editor was called Power Query, and to this date, still shows up
in documentation on many sites, including the Microsoft Office support site. As of
the time of this writing, the two terms are used interchangeably, and questions on
the exam might show using either term.

Importing data to support basic transformations
Let’s start off with basic transformations by importing data from sources that do not
need much in the way of transformations. This approach is very common when
bringing in data from a Data Warehouse where many of the transformation steps that

need to be performed on data have already been handled by the warehouse team.
However, even well-formed data warehouses occasionally do not have all the data for
analysis in the state an analyst requires. Perhaps something was never incorporated
into the warehouse, or maybe a business rule changed, or occasionally, unaccounted
data sneaks into the warehouse. For these examples, import FactInternetSales and
DimCustomer from the AdventureWorksDW2016 SQL Server databases.

Perform take these steps to make the connection to the data source:

1. Click Data tab > Get Data > From Database > From SQL Server Database.
2. In the SQL Server database dialog, configure the following options as below and

in Figure 1-36, and then click OK.

Server Your server name
Database AdventureWorksDW2016

Leave all other items as their defaults

FIGURE 1-36 SQL Server Database configuration

3. In the Navigator dialog (as in Figure 1-37), you can check the Select Multiple
Items check box so you can choose the FactInternetSales and DimCustomer

tables that you want to bring in. Next, click the drop-down on the right side of the
Load button and choose Load To.

4. Make the following selections in the Import Data dialog, and then click OK:

Select How You Want To View This Data In Your Workbook Ensure that
Only Create Connection is selected.
Add This Data To The Data Model Ensure that this option is not selected.

FIGURE 1-37 The data source Navigator

5. Once you have completed this, you have only created a connection to the targeted
data source. At this point, no data has been brought into any Excel objects, which
is fine for now because you are only working on transformations. Once the data
is ready for consumption, you can load it to a consumable location. You should
now see the screen in Figure 1-38. Both tables show up under Queries and are in
a state of Connection Only. If you do not see the Queries & Connections pane
on the right side of the screen, go the Data tab and in the Queries &
Connections group, click the Queries & Connections command. This will
toggle the pane on and off.

NOTE ONLY CREATE CONNECTION

Depending on the size of the data that you are loading, choosing to only
create the connection in the Import Data dialog can help avoid a potentially
lengthy load process when you are in the early stages of data shaping. Later
when you are working in the Query Editor and want to save your work, you
can close and load the work.

FIGURE 1-38 Excel window showing connections and queries

6. Now, look at a few options that are available from the Excel window shown in
Figure 1-38. If you hover over either connection in the Queries & Connections
pane, you can view the “peek” window as shown in Figure 1-39, which is a
snapshot of information about the query. As you will see later in this section, this
window also contains many functions that are available in the Query Editor
window, as shown later in this section.

FIGURE 1-39 Query and connection peek window

7. Other options that are available in the pane can be found by right-clicking on one
of the queries, as shown in Figure 1-40. As with the peek menu in Figure 1-39,
many of the commands in this window can also be performed in the Query
Editor.

8. Now that you have explored some of the options in the Excel window, right-click
FactInternetSales and click Edit in the context menu to open the Query Editor
(see Figure 1-40). This takes you directly to the highlighted query in the Query
Editor, as shown in Figure 1-41.

9. Save your Query Editor work by clicking Home tab > Close Group > Close &
Load. This will close the Query Editor and send you back to Excel.

10. Save your workbook as Chapter01Exercise01.xlsx as it will be used in
subsequent demos.

FIGURE 1-40 Query and context menu

Query Editor Overview

Before you begin the process of transforming data, review the parts of the Query
Editor in Figure 1-41.

1. Ribbon This is where Data Shaping tasks are located. They are grouped into like
functionality by tab and then by tab groupings. Keep in mind that many of the
data-shaping tasks are also available in other locations.

2. Queries pane This lists the objects that you build over the course of shaping
data. Also—as you will see soon—as this list of queries grows, you can add
Groups, which are folders where similar objects can be placed. This will be
demonstrated shortly.

3. Formula bar As you build data-shaping steps, the resulting M code that is
generated for that step is displayed here. If you cannot see the formula bar as
shown, click View tab > Layout group > Formula bar. You can also use the
formula bar to type in your own custom M transformations.

4. Query settings pane Shows the name of the query and the Applied Steps that
have been taken to transform the data. This will be discussed in detail as you
build examples up.

5. Data preview pane Displays a preview of the data resulting from your query. It
is in this window where you select columns that you are looking to shape. To
help with performance, the Query Editor takes a snapshot of the data and caches
it. If you need to refresh the cache, you have a few options. If you want to refresh
only the query you have selected, you can click the Refresh Preview command
from the Home tab, Query group above the formula bar shown in Figure 1-41. If
you want to refresh the preview for all your queries, select the Home > Query
group > Refresh Preview drop down, and choose Refresh All. Note that in this
example, you can see that the last Data preview for FactInternetSales was from
November 17, 2017, as shown in the very bottom right side of the screen in
Figure 1-41. This is also indicated above the formula bar as shown in Figure 1-
42.

FIGURE 1-41 Query Editor

FIGURE 1-42 Data preview cache age indicator

Perform basic transformations
Now that you have reviewed the Query Editor landscape, let’s perform some
transformations on the FactInternetSales table, and then we’ll look at the
DimCustomer table. Ensure that the FactInternetSales query is selected in the Queries
pane and that the Query Settings pane is open. If not, it can be toggled on and off from
Home > View > Query Settings.

Let’s pick up from the Importing data to support basic transformations steps where
you imported FactInternetSales and DimCustomer. Note that you have already
performed two steps, which are listed in the Query Settings pane under APPLIED
STEPS. These came from the initial screens that you ran through to make the
connection. The first step named Source shows the server you connected to and the
second shows that you are bringing the FactInternetSales table from the dbo schema in
the database named AdventureWorksDW2016. To view this metadata, click the gear
icon to the right of each step.

Depending on your source, the Query Editor may attempt to recognize header rows
and data types as well. Because you are connecting to a SQL Server, both can be
determined through database metadata, so this step does not need to be performed.

1. The next thing you notice is that there are lots of columns in this table, many of
which are not needed for this analysis; you should remove the unneeded columns.
There are a few options for doing this. Follow the steps below to remove columns

that you do not need: Ensure that you are in the Query Editor, which was the last
step in the previous exercise.

2. With the FactInternetSales table selected in the Queries pane, click Home >
Manage Columns > Choose Columns command drop-down. From here, you
have two options available. The first option is to choose Go to column, which
allows you to select a column from a list of sorted columns in the query. This is
good for when you have a large table and want to get to a column without
scrolling through the Data preview pane. The second option is Choose Columns,
which allows you to choose only the columns you want to keep by selecting them
in the dialog box. Click Choose Columns and then in the Choose Columns dialog
box, ensure only the following columns are checked and click OK when
complete:

CustomerKey
SalesOrderNumber
SalesOrderLineNumber
OrderQuantity
UnitPrice
UnitPriceDiscountPct
DiscountAmount
SalesAmount
TaxAmt
Freight
OrderDate

3. Notice That you now have a third step named Removed Other Columns as
shown in Figure 1-43.

FIGURE 1-43 Query Settings

4. This step name may be meaningful now, but will it mean something to the next
developer? Likely not. In instances like this, you should document your steps by
highlighting the step you want to document, right-clicking on it to open the
context menu, and then choosing Properties. You are then presented with the Step
Properties dialog box shown in Figure 1-44; here, you can rename the step to
something more meaningful and can also add a description, which is very useful
for complex transformations. Click Cancel, as we will leave the default values.

5. Note if you just want to change the name of the step, you can do that by right-
clicking the step name in the Applied Steps portion of the Query Settings pane,
and then selecting Rename in the context menu. This enables the step name in
Applied Steps to be directly edited.

FIGURE 1-44 Step Properties

6. Look at the M code that was generated after you finished choosing the columns
that you wanted. The code is in Listing 1-1 and can be viewed in the Formula bar
in the Query Editor.

7. Save your Query Editor work by clicking the Home tab > Close group > Close
& Load. This will close the Query Editor and send you back to Excel.

8. Save your workbook as Chapter01Exercise01.xlsx because it will be used in
subsequent demos.

LISTING 1-1 Code generated by the Choose Columns step
Click here to view code image

= Table.SelectColumns(dbo_FactInternetSales,
{"CustomerKey", "SalesOrderNumber",

 "SalesOrderLineNumber", "OrderQuantity", "UnitPrice", "UnitPriceDiscountPct"
,
 "DiscountAmount", "SalesAmount", "TaxAmt", "Freight", "OrderDate"})

 EXAM TIP
M questions are on the exam. As opposed to having a separate section that calls out
how to write M, I have chosen to demonstrate by example. As Applied Steps are

created in the Query Editor, highlight the M code that is generated by the engine. This
allows you to

 perform a function using the GUI, so you become familiar with the M code.

With the Chapter01Exercise01.xlsx file that you have created still open, let’s
explore the Query Editor further. Now that you have only the data you want to look at
in the Data preview pane, review the data types that you have so far. The highlighted
area of Figure 1-45 is one place where you can go to determine the data type for each
column. The data types determine what type of operations you can perform on the
column, and how much storage is required in the model.

FIGURE 1-45 Data Types for each column

Clicking on the highlighted area in Figure 1-45 reveals a list of different supported
data types, as shown in Figure 1-46. If you see the ABC123 icon displayed (not seen
here), this signifies the Any data type has been set for the column. The data types can
also be changed in the Home tab in the Transform group in the Data Type drop-
down. Note that some data types exist only in Query Editor and are converted once
you load the data. An example of this is the percentage data type, which is available in
Query Editor, but once you load the data, it is converted to a decimal.

FIGURE 1-46 Possible Data Types context menu

As you can see, when you move into the section on DAX in Chapter 2.2, the
available Data Types in the Query Editor contains two data types that are not available
in Data or Report view: These are Date/Time/Timezone and Duration. When a
column with these data types is loaded into the Data Model and viewed in Data or
Report view, the following occurs. A Date/Time/Timezone data type is converted into
a Date/Time, and a column with a Duration data type is converted into a decimal
number. Follow these steps to change a data type:

1. Open the Chapter01Exercise01.xlsx file and start the Query Editor if you do not
already have it open.

2. Change the Data Type for UnitPriceDiscountPct from a Decimal to a Percentage
by highlighting the column in the Data preview pane and then navigating to the
Home tab in the and the Transform group in the Data Type drop-down. Choose
Percentage.

3. Observe the resulting M code in the Formula bar as shown in Listing 1-2.

LISTING 1-2 M Code generated the change in data type
Click here to view code image

= Table.TransformColumnTypes(#"Removed Other Columns",
{{"UnitPriceDiscountPct",

 Percentage.Type}})

If you need to rearrange the position of your columns, you have several options.
First, you can select Move from the Transform tab, or right-click the column header
and select Move from the context menu. Move provides you with options to move the
column to the:

Beginning of your query
End of the query
Left
Right

Alternatively, you can drag and drop the columns where needed. Follow these steps
to move the OrderDate column in FactInternetSales to the beginning of the Query:

1. Select the OrderDate column header in the Data preview pane.
2. Drag it into position at the beginning of the query column in the Data preview

pane.
3. Observe the resulting M code in the Formula bar as shown in Listing 1-3.

LISTING 1-3 M Code generated by the Move columns steps
Click here to view code image

= Table.ReorderColumns(#"Changed Type",{"OrderDate", "CustomerKey",
 "SalesOrderNumber", "SalesOrderLineNumber", "OrderQuantity", "UnitPrice

",
 "UnitPriceDiscountPct", "DiscountAmount", "SalesAmount", "TaxAmt", "Fre

ight"})

4. Now let’s add some extra columns to the FactInternetSales table to support
analysis. In this example, you are going to add some additional date and time
columns by taking advantage of some built-in functions. You need to add a year,
month name, and month number to support analytics. Perform the following steps
to add columns: Select the OrderDate column in the Data preview pane.

5. Go to the Add Column tab, From Date & Time group, and select Date as shown
in Figure 1-47. Here you have several functions that you can perform on a Date
Time column to easily extract parts of the date into new columns.

FIGURE 1-47 Date Transforms

6. Next choose Year > Year. This adds a new column at the end of the table with
the value of year. The M code is shown in Listing 1-4. For each row in the table,
this M code has determined the year value and has added it into the newly added
Year column. If you do not like the name that the new column was given, you can
edit the M code by changing the value in the “Year” to some other value;

alternatively, you can do it in an additional step and perform a rename. Before
you do that, add the other columns.

LISTING 1-4 M Code generated by adding the Year column
Click here to view code image

= Table.AddColumn(#"Reordered Columns", "Year", each Date.Year([OrderDat
e]),

 type number)

7. Repeat steps 1-3 two times, once to add a Month, which gives you a month
number, and once to add a Month Name. When you are done, the table should
look like the something like table shown in Figure 1-48. Recall that these
additional columns will appear at the end of your table.

FIGURE 1-48 Snapshot of current exercise steps

NOTE DATE AND TIME TRANSFORMS
If you want to transform Date and Time, you can do this either from the
Transform tab or the Add Columns tab, but they produce different results.
Choosing from the Transform tab transforms an existing column in place;
choosing from the Add Column tab adds an additional column.

8. Now that you are done, take note of the data types. Year and month are both
decimal formats, and the Month name is text format. Make the following changes
to the data types:

Year should be a Whole Number
Month should be a Whole Number
Month Name can remain as Text

9. Now move the three columns to the beginning of the query by using the Move
functionality. To do this, press the Control key and click on the three new
columns. Now right-click to be presented with the context menu where you can
choose Move > To Beginning.

The last thing that you want to do with FactInternetSales is to give the query a
name, and give some of its columns better names. Follow these steps to rename a
query and columns:

1. First, rename the query to a friendlier name, such as InternetSales. This is
important because this name shows up in the data model once you choose Load
To The Data Model. In the Query Settings pane under Properties, change the
Name value to InternetSales as shown in Figure 1-49. Note that you can do this
from the Queries pane by right-clicking on the Query and choosing Rename from
the context menu.

FIGURE 1-49 Query Settings Query Name

2. Now rename the following columns according to Table 1-1. You can do this by
right-clicking on the column names in the Data preview pane and choosing
Rename. Do the same by clicking Transform tab > Any Column group >
Rename, or more easily by double-clicking on the column name in the Data
preview pane and simply typing a new name. The resulting M code for this step
is in Listing 1-5.

TABLE 1-1 Renaming InternetSales columns

Original column name New column name
Month Month Number
Month Name Full Month Name

LISTING 1-5 M Code generated by adding the Year column
Click here to view code image

= Table.RenameColumns(#"Reordered Columns1",
{{"Month", "Month Number"}, {"Month

 Name", "Full Month Name"}})

3. Finally, look at the cumulative result of the M code for all the transforms by
going to the Advanced Editor from either the View or Home tabs while the
InternetSales query is selected. The sample of the Advanced Editor is shown in
Figure 1-50. Your code might be different depending how you did the above
steps. Also, note that the dialog box does not explicitly title it as the Advanced
Editor.

FIGURE 1-50 Advanced Editor

LISTING 1-6 All M Code applied to Fact Internet Sales
Click here to view code image

let
 Source = Sql.Databases("localhost"),

 AdventureWorksDW2016 = Source{[Name="AdventureWorksDW2016"]}[Data],
 dbo_FactInternetSales =

 AdventureWorksDW2016{[Schema="dbo",Item="FactInternetSales"]}[Data],
 #"Removed Other Columns" = Table.SelectColumns(dbo_FactInternetSales,

{"CustomerKey",
 "SalesOrderNumber", "SalesOrderLineNumber", "OrderQuantity", "UnitPrice",

 "UnitPriceDiscountPct", "DiscountAmount", "SalesAmount", "TaxAmt", "Freight"
,
 "OrderDate"}),

 #"Changed Type" = Table.TransformColumnTypes(#"Removed Other
 Columns",{{"UnitPriceDiscountPct", Percentage.Type}}),

 #"Reordered Columns" = Table.ReorderColumns(#"Changed Type",{"OrderDate",
 "CustomerKey", "SalesOrderNumber", "SalesOrderLineNumber", "OrderQuantity",

"UnitPrice",
 "UnitPriceDiscountPct", "DiscountAmount", "SalesAmount", "TaxAmt", "Freight"

}),
 #"Inserted Year" = Table.AddColumn(#"Reordered Columns", "Year", each

 Date.Year([OrderDate]), type number),
 #"Inserted Month" = Table.AddColumn(#"Inserted Year", "Month", each

 Date.Month([OrderDate]), type number),
 #"Inserted Month Name" = Table.AddColumn(#"Inserted Month", "Month Name",

 each
 Date.MonthName([OrderDate]), type text),

 #"Changed Type1" = Table.TransformColumnTypes(#"Inserted Month Name",
{{"Year",

 Int64.Type}, {"Month", Int64.Type}}),
 #"Reordered Columns1" = Table.ReorderColumns(#"Changed Type1",

{"Year", "Month",
 "Month Name", "OrderDate", "CustomerKey", "SalesOrderNumber", "SalesOrderLin

eNumber",
 "OrderQuantity", "UnitPrice", "UnitPriceDiscountPct", "DiscountAmount", "Sal

esAmount",
 "TaxAmt", "Freight"}),

 #"Renamed Columns" = Table.RenameColumns(#"Reordered Columns1",
{{"Month", "Month

 Number"}, {"Month Name", "Full Month Name"}})
 in

 #"Renamed Columns"

Now, look at performing some transformations on the DimCustomer table. In the
next steps you will:

Remove unneeded columns.
Merge columns.
Extract values from existing columns.

First, remove columns that are not needed for analysis. With the DimCustomer
query selected in the Queries pane, select the following columns by highlighting the
first one, pressing the Control key, and then highlighting the remaining columns.
Alternatively, you can make changes column by column (the resulting code will be the
same). Either way, once you have one column (or all columns) chosen, you can right-
click and select Remove Columns from the context menu or do the same from the

Manage Columns group on the Home tab, which is shown in Figure 1-51. The
resulting M code is shown in Listing 1-7.

GeographyKey
NameStyle
TotalChildren
NumberChildrenAtHome
EnglishEducation
SpanishEducation
FrenchEducation
EnglishOccupation
SpanishOccupation
FrenchOccupation
HouseOwnerFlag
NumberCarsOwned

FIGURE 1-51 Remove Columns Options

LISTING 1-7 All M Code applied by removing columns from
DimCustomer
Click here to view code image

= Table.RemoveColumns(dbo_DimCustomer,
{"GeographyKey", "NameStyle", "TotalChildren",

 "NumberChildrenAtHome", "EnglishEducation", "SpanishEducation", "FrenchEduca
tion",

 "EnglishOccupation", "SpanishOccupation", "FrenchOccupation", "HouseOwnerFla
g",

 "NumberCarsOwned"})

NOTE REMOVE OTHER COLUMNS

If you have a table that has many columns and you only want to keep a few, you
can use the Remove Other Columns transform, which keeps only the columns you
have selected. The M function for this is Table.SelectColumns.

Now that you have only the columns you want, we will extract the username from
the email address column and create a new column. This Extract command is used to
extract characters from columns and can perform the operations shown in Figure 1-52.

FIGURE 1-52 Extract options

Perform the following steps to extract the username from the email columns:

1. Ensure the EmailAddress column in the DimCustomer query is selected.
2. Click the Add Column tab and find the Extract command under the From Text

grouping. From here, choose the Text Before Delimiter option.
3. Configure the values per Text Before Delimiter dialog in Figure 1-53. The result

of this is to select all the characters before @ symbol, to start the scan from the
beginning of the text field and to skip 0 delimiters. Click OK when complete.

FIGURE 1-53 Extract Text Before Delimiter dialog

4. Find the new column that has been added to the end of the table and rename it to
Username. The resulting M code for both the extract and rename is shown in
Listing 1-8.

LISTING 1-8 M code for the Extract of username and rename of
new column
Click here to view code image

= Table.AddColumn(#"Removed Columns", "Text Before Delimiter", each
 Text.BeforeDelimiter([EmailAddress], "@", 0), type text)

 = Table.RenameColumns(#"Inserted Text Before Delimiter",
{{"Text Before Delimiter",

 "Username"}})

Lastly, merge the three name columns together using the Merge function by
performing the following steps:

1. Ensure that DimCustomer is the selected query in the Query pane.
2. Highlight the FirstName column, press and hold the Control key and then select

the MiddleName and LastName fields.
3. Click the Add Column tab and find the Merge command under the From Text

grouping. This brings you to the Merge Columns dialog screen in Figure 1-54.
Here you can choose the separator that you would like to put between the
columns and can give the new column a name. Choose Space as the Separator
and name the New Column Full Name (with a space). The resulting M code is
shown in Listing 1-9.

FIGURE 1-54 Merge Columns dialog

LISTING 1-9 M code for the Merging of columns
Click here to view code image

= Table.AddColumn(#"Renamed Columns", "Full Name", each
 Text.Combine({Text.From([CustomerKey], "en-

CA"), [FirstName], [MiddleName], [LastName]},
 "

 "), type text)

Listing 1-10 contains the resulting combined M code for all of the steps you applied
to DimCustomer. You will find this by opening the Advanced Editor.

LISTING 1-10 M code for the Extract of username and Rename of new
column
Click here to view code image

let
 Source = Sql.Databases("localhost"),

 AdventureWorksDW2016 = Source{[Name="AdventureWorksDW2016"]}[Data],
 dbo_DimCustomer = AdventureWorksDW2016{[Schema="dbo",Item="DimCustomer"]}

[Data],
 #"Removed Columns" = Table.RemoveColumns(dbo_DimCustomer,

{"GeographyKey", "NameStyle",
 "TotalChildren", "NumberChildrenAtHome", "EnglishEducation", "SpanishEducati

on",
 "FrenchEducation", "EnglishOccupation", "SpanishOccupation", "FrenchOccupati

on",
 "HouseOwnerFlag", "NumberCarsOwned"}),

 #"Inserted Text Before Delimiter" = Table.AddColumn(#"Removed Columns", "
Text Before

 Delimiter", each Text.BeforeDelimiter([EmailAddress], "@", 0), type text),
 #"Renamed Columns" = Table.RenameColumns(#"Inserted Text Before Delimiter

",{{"Text
 Before Delimiter", "Username"}}),

 #"Inserted Merged Column" = Table.AddColumn(#"Renamed Columns", "Full Nam
e", each

 Text.Combine({Text.From([CustomerKey], "en-

CA"), [FirstName], [MiddleName], [LastName]},
 " "), type text)

 in
 #"Inserted Merged Column"

Now that you have completed what you need to transform both FactInternetSales
and DimCustomer, it is time to do some housekeeping by performing the following
steps:

1. Rename DimCustomer query to Customer.
2. Start organizing the queries that you have in the Queries pane. Create a new

Group in the Query Pane named Fact Queries. Do this by right-clicking in an
open space in the Query pane and then select New Group in the context menu per
Figure 1-55. In the New Group dialog that opens, configure the following and
click OK.

Name Fact Queries.
Description This is the group where you place fact queries. Any queries in
this folder are moved to the Data Model when you load to it.

FIGURE 1-55 Create a New Group

3. Create a second group with the following values:

Name Dimension Queries.
Description This is the group where you place dimension queries. Any
queries in this folder are moved to the Data Model when you load to it.

4. Now that you have these two groups created, the queries pane should look like
Figure 1-56.

FIGURE 1-56 New Groups in the Queries Pane

5. What you need to do next is to move the InternetSales query to the Fact Queries
group and move Customer to the Dimension Queries group. This can be done
with a drag and drop, or by right-clicking on either query and selecting Move To
Group and then selecting the proper group from the context menu. Note that you
can also create a new group from this menu. Once you have done this, the
Queries pane looks like Figure 1-57. When you create your first group, a new
folder called Other Queries is generated by the Query Editor and this group
cannot be deleted because it becomes the default group for new objects.

FIGURE 1-57 Queries moved to groups

6. As a final step to this transformation, load this data through to the Data Model.
To do this, save your work in the Query Editor; in the Home tab, choose Close &
Load. This brings you back into Excel.

7. In the Queries & Connections pane in Excel, right-click on InternetSales and
choose Load To from the context menu, which brings you to Figure 1-58.
Originally, you had asked to Only Create Connection. Now that you are done
with Transforms, check the Add this to the data model check box. When done
click OK and notice that the status of the Query in Excel has changed to show the
rows loaded.

FIGURE 1-58 Import Data dialog

Another concept called Query Folding is worth pointing out since you are
connecting to a relational database management system. Power Query attempts to
translate the APPLIED STEPS into the data source’s native language where supported.
To see whether Query Folding takes place, right-click on any step in the Query
Settings pane and choose View Native Query from the context menu. If the step cannot
be selected because it is dimmed in the context menu, it means that Query Folding
does not take place or has been disabled at some point in the steps. This is the case
with InternetSales as it currently stands. Query folding ends after the Removed Other
Columns step. Perform the following steps see the entire query run using query
folding:

1. Open the Query Editor and select the InternetSales Query.
2. Remove the step that converts UnitPriceDiscountPct to a Percentage data type by

clicking the x to the left of the step name or by right-clicking and selecting
Delete from the context menu.

3. Remove the step that inserts the Month Name and all the step after it by right-
clicking the Inserted Month Name step and choosing Delete Until End from the
context menu. Now right-click on the last step and highlight the View Native
Query. Your screen should now look like Figure 1-59.

FIGURE 1-59 View Native Query

4. Now Click on View Native Query to open the Native Query dialog (Figure 1-60).

FIGURE 1-60 Native Query window

MORE INFO QUERY FOLDING
For more information on Query Folding, see Koen Verbeeck’s article titled
Query Folding in Power Query to Improve Performance:
https://www.mssqltips.com/sqlservertip/3635/query-folding-in-power-query-
to-improve-performance/.

5. Click OK and then close the Query Editor. When the Query Editor Keep your
changes dialog box opens, click Discard to remove the changes that you made to
get Query folding to work.

Advanced transformations
Now that you have done some basic transformations, it is time to look at some more
advanced techniques. In this example, you use multiple text files to build out a star
schema that is based on the Fact Internet Sales schema in AdventureWorksDW2016.

To start this exercise, you are going to combine files in a folder named Countries,
which contains five Excel workbooks, and then append the combined query to a file

https://www.mssqltips.com/sqlservertip/3635/query-folding-in-power-query-to-improve-performance/

with U.S. data. The Countries folder contains a spreadsheet for Internet Sales in each
country with which Adventure Works does business. These files share the same
structure, and all contain a column named Country, which is set to the country’s name.
However, the U.S. file does not have a column for country name and it is implied that
each row of data is for the U.S. To solve this imbalance, add a custom column to the
U.S. file.

Follow these steps to combine the files in the Other Countries folder using a folder
import and the Combine Files transform.

1. Open a new blank Excel workbook.
2. Select Data tab > Get Data > From File > From Folder.
3. When the Folder Path dialog box opens, browse to the location where you

downloaded the Book Sample file to, then navigate to \Chapter 1\Advanced
Example 1\Append Examples\Other Countries.

4. A dialog box like the one in Figure 1-61 will appear, showing the five named
.xlsx files you want to append. Scroll though and note the metadata that is
extracted for each file. Once you are done, select Edit. As a note, you can choose
Combine And Edit to open the Query Editor with a fully combined set. In this
example, you are looking to show you the details as they are examinable.

FIGURE 1-61 Files in Folder Source

5. Select the first column named Content as shown in Figure 1-62.

FIGURE 1-62 Combine Files Options

6. Click the icon on the right side of the column header as highlighted in Figure 1-
62 OR from the Ribbon Choose the Home tab > Combine Group > Combine
Files. Both options move you to the Combine Files dialog in Figure 1-63. In this
dialog you make the following selections:

Example File You leave the First file, but you can select any of the files as
an example via the drop-down. This provides the template from which all
other file structures are compared.
Sample File Parameter Here you choose which object you want to load
from the spreadsheet. Select tblSales.
Skip Files With Errors Leave this unchecked. If checked, files that do not
match will be skipped.

FIGURE 1-63 Combine Files dialog

7. Once you are done, click OK, which completes the process of combining the files
into a table called Other Countries. Several other objects are created in the
Queries pane that are used to support loading and combining the files from the
folder source.

FIGURE 1-64 Results of File combine

8. Remove the column named Source.Name.

Now that you have combined the data for other countries’ Internet sales, it is time to
Append the U.S. and Other Country queries together with it so that you have the
complete picture of Internet Sales across all countries. Since the U.S. file is missing
the Country Column, which is contained in the Other Countries data set, you need to
prepare that data set first.

For Append to work as expected, the queries must have the same number of
columns, with the same names and same data types within each column. If the
columns in a source query are different, Append still works, but it will create one new
column for each new column in the queries. The source that does not have that column
will be assigned a null value.

Perform the following steps to Add the column, rearrange the data set, and then
Append the sets:

1. If you are in the Query Editor, from the Home tab > New Query group > click
New Source > File > Excel.

2. When the Import Data dialog box opens, browse to the location where you
downloaded the Book Sample file and navigate to \Chapter 1\Advanced
Example 1\Append ExamplesUnited States Sales.xslx and click Open on the
file.

3. In the Navigator, choose tblSales from the spreadsheet and click OK.
4. Rename the Query to US Sales from tblSales.

5. Next, you need to add a new column named EnglishCountryRegionName to the
U.S. Sales query and default its value to United States. To do this, click the Add
Column tab and choose Custom Column from the General grouping, as shown in
Figure 1-65. Configure the values as shown in Figure 1-65 and then click OK.
See Listing 1-11 for the M code that will be generated from this step.

FIGURE 1-65 Custom Column dialog

LISTING 1-11 M code for the Custom column
Click here to view code image

= Table.AddColumn(#"Changed Type", "EnglishCountryRegionName ", each "Un
ited States")

6. Next change the data type from the Any Type, which is denoted with the
ABC123 icon, to Text.

7. Our queries are now aligned, so now you can go ahead and append them. First,
highlight the US Sales Query and from the Home tab, Choose Append from the
Combine grouping. You can choose Append or Append Queries As New. Choose
Append Queries As New to create a new query.

8. You should now see the Append dialog in Figure 1-65, which is where you
choose what to append. Notice that you are only appending two files but using
this method you can choose three or more. For this step, configure the values as
shown in Figure 1-65. Once done, click OK.

FIGURE 1-66 Append dialog

9. You will now have a new query named Append1, which is the default name given
to the newly created query. Rename this query to Internet Sales All Countries.
Notice that this query only has one entry in Applied Steps.

10. Now look at the M code for the Append, which is in Listing 1-12. Notice that this
code resides in the first step named Source of the newly created query.

LISTING 1-12 M code for the Append as New Query function
Click here to view code image

= Table.Combine({#"US Sales", #"Other Countries"})

You have completed the steps to Append the data together that is the fact table in the
star schema that you are populating. Now you need to bring in some other dimensions.
The first ones to bring in are the Product, Product Subcategory, and Product Category
files. Once you have these loaded, use the Merge function to bring them into one
query.

To begin the process of merging data, perform the following steps:

1. If you are in the Query Editor, click Home > New Query > New Source > File >
Excel.

2. When the Import File dialog box opens, browse to the location where you
downloaded the Book Sample file and navigate to \Chapter 1\Advanced
Example 1\Merge Examples\ then bring each of the files in one by one and
choose the table object in each file. Repeat steps 1 and 2 until the Product,
Product Subcategory, and Product Category Excel files have been imported.

3. Rename each of the queries as below:

tblProducts should be renamed to Products
tblProductSubcategory should be renamed to ProductSubcategory
Table1 to ProductCategory

4. Now, you need to merge the queries so that all the values in the hierarchy are in
the Product table. For the first merge, select the Product query and then choose
Home tab, Combine Group > Merge Queries.

5. Configure the values as shown in the Merge dialog in Figure 1-67. The Products
query should show up at the top because it was the query you selected when you
executed the Merge command.

6. Next, choose what table you want to merge to it by choosing the
ProductSubcategory table from the drop-down box. Once this has been selected,
you need to tell Power Query which fields you want to merge.

7. In this example, you only join the ProductSubcategoryKey in each table by
highlighting each column. Note that it is possible to use multiple fields to merge
the columns. In that case, the order in which you choose columns matters.

8. Lastly, you need to choose a Join Kind. In this example, you choose Left Outer
because you want all rows in the first query, regardless as to whether a match
exists in the right-hand (bottom) query. However, even with this configuration,
notice that you have an error at the bottom of the screen which says that you need
to Select columns of the same type to continue. What happened? To find out,
cancel out of this window for now so you can correct the issue.

FIGURE 1-67 Merge dialog

 EXAM TIP
Be sure to understand how to Merge queries well. Also, be familiar with the
available Join Kinds and how each works. Join kinds are a classic exam question
across many technologies.

9. Upon inspecting the queries, you’ll notice that the ProductSubcategoryKey in the
Product table has been defaulted to the Text data type by Power Query, and the
ProductSubcategoryKey in the ProductSubcategory query value is an integer. To
fix this make the following change:

A. Make the ProductSubcategoryKey in the Product Query a Whole Number.
When making this change, you might see the warning message in Figure 1-
68. Power Query is asking if it should just replace the conversion it made
with this one, or if you intended on creating a separate step in Query
Settings. Select Replace Current.

FIGURE 1-68 Change Column Type Question dialog

10. We can now repeat the instructions in Step 4. At the bottom of Figure 1-67, you
should now see the message in Figure 1-69. Once complete press OK.

FIGURE 1-69 Join Match Information

11. The next step is to finish the Merge process by selecting which columns from the
Product Subcategory table to keep in the Product table. To do this, select in the
Product query and move to the far-right side where you see the last column
represented as a Table shown in Figure 1-70. Also, see the M code in Listing 1-
13.

FIGURE 1-70 Screenshot showing the table expander

LISTING 1-13 M code for the Merge Function
Click here to view code image

= Table.NestedJoin(#"Changed
 Type",{"ProductSubcategoryKey"},ProductSubcategory,

{"ProductSubcategoryKey"},
 "ProductSubcategory",JoinKind.LeftOuter)

12. Click on the table expand icon highlighted in Figure 1-70 and then you are
presented with the screen in Figure 1-71. Configure the values as shown.
ProductSubcategorykey would be redundant to keep, so uncheck it. You need the
Product Category key to perform the next Merge. The resulting M code the table
expanded is in Listing 1-14. More information on the configuration values is
provided below.

Expand Use this if you want to bring in rows one for one according to the
Join Type.
Aggregate Used to aggregate values before the merge.
Use original column name as prefix This prepends all new column names
with the original table name.

FIGURE 1-71 Expanded Column Selector

LISTING 1-14 M code for the Table Expand Function
Click here to view code image

= Table.ExpandTableColumn(#"Merged Queries", "ProductSubcategory",
 {"EnglishProductSubcategoryName", "ProductCategoryKey"},

 {"EnglishProductSubcategoryName", "ProductCategoryKey"})

13. Now that you have merged the two tables that you needed, you can now merge
Product with Product Category. To do this, ensure that the Product query is
highlighted and choose Merge.

14. Configure the Merge with the values in Figure 1-72 and then click OK.

FIGURE 1-72 Merge dialog

15. Once complete, expand the new table out as shown in step 12, check the
EnglishProductCategoryName, and uncheck the Use Original Column Name As
Prefix option as in Figure 1-73. Click OK when complete.

FIGURE 1-73 Expanded Column Selector

16. Now, you have all columns that you need in the Product table that enables a
traditional Star Schema Product Dimension versus the snowflake that you started
with. Remove columns that you do not need by using the Choose Column
command. Keep the following columns and then put them in the order below
using Move:

ProductKey
EnglishProductName
EnglishProductSubcategoryName
EnglishProductCategoryName
Color
ListPrice
Size
SizeRange
Weight

Now that you have cleaned up the table, you have two tasks left to make the table
consumer-ready. Replace the null values in EnglishProductSubcategoryName and the

EnglishProductCategoryName columns with Text value values. Replace each with
Undefined Subcategory and Undefined Category, respectively.

1. Ensure that the Products query is selected in the Queries pane of the Query
Editor.

2. To replace the values, right-click on the EnglishProductSubcategoryName
column and choose Replace Values from the context menu to open the Replace
Values dialog in Figure 1-74. In this figure, you are replacing the null values in
EnglishProductSubcategoryName with the text value Undefined Subcategory.
This makes the end-user reporting easier to understand. Take note that you have
two additional advanced options available that you can specify to use. Once
done, click OK.

FIGURE 1-74 Replace Values dialog

LISTING 1-15 M code for the Replace Values Function
Click here to view code image

= Table.ReplaceValue(#"Reordered Columns",null,"Undefined
 Subcategory",Replacer.ReplaceValue,{"EnglishProductSubcategoryName"})

3. Repeat Step 2 for the EnglishProductCategoryName column and replace null
with Undefined Category.

4. Now get rid of any duplicate rows in the Products query. To do this, click the
ProductKey column then right-click it to get the context menu and choose
Remove Duplicates.

5. You now have a well-formed product dimension for your users to consume. At
this point it is worth looking at the Query Dependencies that are forming between
the sources you have imported and merged together. In the View tab >

Dependencies group > click Query Dependencies to see the screen in Figure 1-
75. You can see the sources and how they feed into queries and then how the
queries merge. You can also see the load state, and if you had any query metadata
defined it would show up in the diagram as well. Click Close to close the
diagram.

FIGURE 1-75 Query Dependencies

6. Try to delete a query that has a dependency to see what happens. Highlight the
ProductSubcategory query, right-click, and select Delete from the context menu.
You should see the dialog shown in Figure 1-76. Click Close, and you can
continue to bring in additional queries for your model.

FIGURE 1-76 Delete Query warning

So far in this example, you have brought in Internet Sales data by combining and
merging data from files and you have merged the product tables into one table. To help
support our analysis, the business has asked you to also bring in Customer and
Customer demographic information. Follow these steps to prepare the Customer
query:

1. If you are in the Query Editor, click Home tab > New Query group > New
Source > File > Excel.

2. When the Import Data dialog box opens, browse to the location where you
downloaded the Book Sample file and navigate to \Chapter 1\Advanced
Example 1\Customers.xlsx and click Import.

3. In the Navigator dialog, choose the tblCustomers object and then Click OK.
4. In the Query Editor, rename the newly imported query to Customers.
5. Now you want to bring in some additional Demographic information to the

customer query from the AdventureWorks database. Connect to the SQL Server
where your AdventureWorks2016 is located and configure the SQL Server
Database connection as in Figure 1-77. Note that since we are writing a SQL
query, we must supply a Database name. The SQL statement is shown in Listing
1-16. Once done Click OK.

6. Click OK on the next screen, which is a preview of the data that will be returned
query. This will bring you back to the Query Editor.

FIGURE 1-77 SQL Server Configuration dialog

LISTING 1-16 SQL Code to obtain the extended demographics
information
Click here to view code image

SELECT c.AccountNumber,
 p.FirstName,

 p.LastName,
 p.Demographics

 FROM [Sales].[Customer] c
 JOIN [Person].[Person] p
 ON p.BusinessEntityID = c.PersonIDRename the new query to CustomerDem

ographics

7. In the Data preview pane, highlight the demographics column in your new query.
Notice that the data in the column is XML data. You want to parse this out by
going to the Transform tab > Text Column group > Parse, and click the XML
command. You can see that the XML is transformed into a table as in Figure 1-
78. Also, the M code is shown in Listing 1-17.

FIGURE 1-78 XML Transformed to Table dialog

LISTING 1-17 SQL Code to obtain the extended demographics
information
Click here to view code image

= Table.TransformColumns(Source,{{"Demographics", Xml.Tables}})

8. Click the Expand table icon in Figure 1-78 to display the attributes that are in the
XML string. You might only see a few values in the dialog, so it might be
necessary to click Load More to see all attributes.

9. In the dialog, choose the TotalPurchaseYTD column and do not check Use
original column name as prefix. Click OK when you are done. Listing 1-18
shows the M code that is generated by this step.

LISTING 1-18 Table Expand XML code
Click here to view code image

= Table.ExpandTableColumn(#"Parsed XML", "Demographics", {"TotalPurchase
YTD"}, {"TotalPurchaseYTD"})

10. Change the data type to Currency.
11. Next, Merge this piece of data to the Customers query using the steps described

earlier in the Merge section. Highlight on the Customers query and choose Home
tab, Combine group, and click Merge Queries.

12. In the Merge dialog box, ensure that Customers is the top table and then choose
CustomerDemographics as the second table. Choose Left Outer Join Between
CustomerKey in the Customers Query and AccountKey in the
CustomerDemographics Query. Click OK.

13. Once you do this, you may be presented with Figure 1-79, which is asking you to
configure Privacy levels between the sources. For both, choose Private and Click
Save.

FIGURE 1-79 Privacy level settings dialog

14. In the CustomerDemographics column at the end of the Customers query, expand
the table and choose the TotalPurchaseYTD column, and deselect Use original
column name as prefix. Click OK when you are done.

15. We now have the TotalPurchaseYTD demographic information in the Customers
query.

The last table that you need to bring into the model is Sales Territories. As you can
see, this table contains a hierarchy that is embedded into one field. Take this column
and use the Split function to create fields for each level of the hierarchy, then capitalize
the top level of the hierarchy per a business requirement.

1. If you are in the Query Editor, Click Home > New Query > New Source > File
> Excel.

2. When the Import Data dialog box opens, browse to the location where you
downloaded the Book Sample file and navigate to \Chapter 1\Advanced
Example 1\Sales Territories.xlsx and click Import.

3. In the Navigator dialog, choose the tblSalesTerritories object and then Click OK
to bring it into the Query Editor.

4. Rename the query to SalesTerritories.
5. Highlight on the SalesTerritoryRollup column and then in the Transform tab,

Text Column grouping click Split Column by Delimiter. Note that you have the
option to also Split by characters if your field had that requirement. If you use the
Split function from the Transform tab, the original column is replaced when you
are complete. Configure the following options and Click OK when don2e. Listing
1-19 contains the M code for the Split.

Select Or Enter Delimiter You have the option of choose common
delimiters such as columns, tabs, and spaces or entering a Custom delimiter

like the one in this example. Type the pipe symbol | as your custom
delimiter.
Split At You can choose Left-Most Delimiter, Right-Most Delimiter, or
Each Occurrence Of The Delimiter. Select Each Occurrence Of The
Delimiter.
Split Into Your options are Columns or Rows; choose Columns.
Number of columns to split into You can choose how many columns that
you want your data Split into. In our example, type 3.
Quote Character Choose the quote character to detect. Leave the default
setting.
Split using special characters Available if your Split requires special
characters.

FIGURE 1-80 Split Column by Delimiter dialog

LISTING 1-19 Split M code
Click here to view code image

= Table.SplitColumn(#"Changed Type", "SalesTerritoryRollup",
 Splitter.SplitTextByDelimiter("|", QuoteStyle.Csv), {"SalesTerritoryRol

lup.1",
 "SalesTerritoryRollup.2", "SalesTerritoryRollup.3"})

6. You should now see three columns in the Data preview pane. Rename each as
described below:

SalesTerritoryRollup.1 to Territory
SalesTerritoryRollup.2 to Country
SalesTerritoryRollup.3 to Continent

7. Now capitalize the Continent column. Highlight the Continent field, right-click,
and choose Transform > Uppercase from the context menu. The M code for this
step is shown in Listing 1-20.

LISTING 1-20 UPPERCASE transform M code
Click here to view code image

= Table.TransformColumns(#"Renamed Columns",{{"Continent", Text.Upper}})

Now that you have a model that is complete and ready for consumption, it is time
for you to load the data into to the Data Model.

1. First you should categorize the objects in Queries pane. In this example, you
create a group for queries that are eventually output to the Data Model, and one
for objects that are used only in the Transformation process that will never be
exposed to the end users. Create the Groups and move the objects to the Groups
as shown and in Figure 1-81.

FIGURE 1-81 Queries pane with groupings

2. Once you have done this, close the Query Editor and then in Excel, ensure that
the Queries and Connections pane is open as in Figure 1-82. On each of
SalesTerritories > Customers > Products and Internet Sales All Countries, right-
click and choose Load To. In the Import Data dialog box, check the Add This
Data To The Data Model option. These tables are in the Excel Data Model, which
is covered more in Skill 2.1 from Chapter 2.

FIGURE 1-82 Queries & Connections

Some other items worth discussing that fall into the category of Query management
are Data Source Settings, Manage Queries, and Recent Sources.

To Manage Data Source Settings, from the Query Editor go to the Home tab, Data
source, and click Data Source Settings to open the dialog where you can choose
Manage Data Source Credentials > Privacy Levels > and change the source as in
Figure 1-83.

FIGURE 1-83 Data source settings

To change the source, highlight the first data source and click Change Source. When
moving the source, you are presented with the same dialog box that you initially
configured when connecting to your source. Remember that the structures after the
initial configuration need to remain the same or your subsequent query steps will
likely fail.

To manage Credentials and Privacy levels, Click Edit Permissions to be presented
with the dialog shown in Figure 1-84.

FIGURE 1-84 Edit Permissions dialog

To Manage queries, go to the Query Editor at Home > Query > Manage. You can
perform the following three commands:

Delete Does as advertised and deletes the object if it has no dependencies.
Reference This option creates a new Query that references the query you want.
The new query is created with a source step that calls the referenced query. This

is useful when you have repetitive logic that needs to be applied to many queries
that you want to write once and refer to many times.
Duplicate This option creates a distinct copy of the query you want to copy and
after the duplication process it’s completely disconnected from the original.

Recent Sources can be managed in the Query Editor as well. To do this, click the
Home tab, New Query, and click on Recent Sources, which shows the connection
information for sources that you have connected to. It can help speed up the process of
connecting to data sources that you have already connected to.

Apply business rules
Now, let’s examine some of the functions that are available for applying business rules
to your data. Often in operational systems, data is entered without following
appropriate business rules. It is then up to the data-shaping process to apply those
business rules so analysis can be performed. This typically involves using functions
within your data-shaping steps that enable you to provide more complex logic.

Columns from examples
Columns from examples is a user-friendly method for building new columns from
existing ones. Power Query attempts to recognize the pattern that you are entering,
trying to extract text according to your pattern. It is modeled after Flash Fill in Excel.
Try to use this to extract the username from the part of the email address before the @
symbol:

1. Go to the Customers query and highlight on the EmailAddress column.
2. Then go to Add Column tab, General group, Columns From Examples >

From Selection, as shown in Figure 1-85. The last column initially starts blank.
In that column, you begin to type the pattern that you want to find in the Email
Address column and the detection process begins. If you type jon24 in the first
row and then press Enter, Power Query determines that the Text before delimiter
function should be applied to the column. If this is what you need, Click OK to
complete.

FIGURE 1-85 Add Column from example

Invoke custom function
To invoke a custom function, you first need to create one. You are going to create a
function that takes the EngishCountryRegionName and passes out the ISO-ALPHA-3
value. Follow these steps to create the function and invoke it:

1. If you are in the Query Editor go to the Home tab > New Query > New Source
> Other Sources > Blank Query. This creates a blank query in the Other
Queries Group as shown in Figure 1-86.

FIGURE 1-86 Screenshot of new Blank Query

2. Rename the new query from Query1 to ConvertCountryNameToISO-ALPHA-3.
3. With the query still selected in the Queries pane, go to the Home tab and click the

Advanced Editor.
4. Using Widows File Explorer, navigate to where you downloaded the Book

Sample files and Open \Chapter 1\Function\ConvertCountryNameToISO-
ALPHA-3.txt using your favorite text editor.

5. In the Advanced Editor, delete any existing code, then cut and paste the code
from the text file to the Advanced Editor.

6. With the ConvertCountryNameToISO-ALPHA-3 function highlighted, test it
by entering the parameter value of Canada in the Input text box. Click Invoke
and the output should be CAN. Note that this is case-sensitive, so you need to
handle this when invoking the function.

7. Now invoke the custom function by opening the InternetSalesAllCountries
query and click Add Column tab > General group > Invoke Custom Function.
Configure the dialog as shown in Figure 1-87 and below. Click OK and then
verify that the new column is added.

New column name EnglishCountryRegionISO3Code
Function query ConvertCountryNameToISO-ALPHA-3
Input (optional) EnglishCountryRegionName

FIGURE 1-87 Invoke Custom Function dialog

Conditional Column
A Conditional Column operates as an IF statement. A new column is created in the
query based on one or more conditional expressions you define within the Add
Conditional Column dialog box.

In this example, create a new column based on the customer’s yearly income. Place
them into four categories: student, low income, middle income, and high income. This
information can be used to help target marketing promotions as well as with customer
profiling.

Follow these steps:

1. Select the YearlyIncome column in the Customer query.
2. Select Add Column tab > General group > Conditional Column.
3. In the Add Conditional Column dialog box, enter Income Category as the New

Column Name and configure the values as in Figure 1-88.
4. Click OK when complete.

FIGURE 1-88 Add Conditional Column dialog

Index Column
An Index column can be added to a table for many purposes. There are three options
for creating an Index column:

From 0 Creates an index that starts at 0 and increments by 1
From 1 Creates an index that starts at 1 and increments by 1
Custom Allows you to choose the start and increment values

Change data format to support visualization
One of the jobs of the person performing data shaping is to shape the data in a manner
that makes building visualizations as easy as possible. The target state of any data set
is that is to set it up so that consumers can simply drag and drop values from the Excel
data model into PivotCharts or PivotTables for analysis. If users find themselves
having to perform transformations when they are building visualizations, these
situations are normally candidates for pushing back into the data-shaping layer,
especially if they are often-used fields for display or filtering.

Group By
A common task for visualizations is to provide pre-aggregated data. In this example,
you take the InternetSalesAllCountries and create a new query that Aggregates Sales
Amount by Year and Country. Follow these steps to perform this:

1. Highlight the Internet Sale All Countries query.
2. Right-click on it and select Reference from the context menu. This allows you to

take advantage of the effort put into creating Internet Sales All Countries.

3. A new query is created with a single step that refers to Internet Sales All
Countries.

4. Rename the query Internet Sales By Year And Country.
5. From the Home tab go to Transform group and choose Group By.
6. Configure the Group By as in Figure 1-89 and then click OK.

FIGURE 1-89 Group By dialog

Filter data
One of the often-overlooked simple performance tuning mechanisms in any data
analysis tool is to only bring in the data that is necessary to support the analytics at
hand. Ultimately you want to build flexible solutions that can handle the next question
that is asked of it—building flexible and performant applications is your job as the
person building these solutions for your organization.

Text Filters
If you have a text-based field highlighted, in the Data preview pane you can select the
drop-down that presents you with the filtering criteria for the data type that has focus.
Figure 1-90 has the drop-down on the field highlighted.

FIGURE 1-90 Filter selector location

FIGURE 1-91 Text Filters

Numeric Filters
If you have a numeric-based field highlighted, from the Data preview pane you can
select the drop-down that presents you with the filtering criteria for the data type that
has the focus.

FIGURE 1-92 Numeric Filters

Date Filters
If you have a date-based field highlighted, from the Data preview pane you can select
the drop-down that presents you with the filtering criteria for the data type that has
focus. There are many available Date filters.

FIGURE 1-93 Date Filters

NEED MORE REVIEW? DATA TYPE FILTERS

For more review on the usage of data type filters, see
https://support.office.com/en-us/article/Filter-a-table-Power-Query-b5610630-
f5bf-4ba4-9217-a628f9b89353.

Parameters
One way to limit the data that is brought in for analysis is to take advantage of
Parameters. In this example, you restrict the years that are brought into the Internet
Sales All Countries query. Follow these steps to parameterize the value:

1. Home > Parameters > Manage Parameters > New Parameter.
2. Configure the values as in Figure 1-94 and then Click OK.

FIGURE 1-94 Manage Parameters dialog

https://support.office.com/en-us/article/Filter-a-table-Power-Query-b5610630-f5bf-4ba4-9217-a628f9b89353

3. You should now see a parameter in the Queries pane that has been created with
the name InternetSalesYear and with “2012” in parentheses, which denotes the
current parameter value.

FIGURE 1-95 Parameter with its current value

4. Now use the filter to restrict the OrderYear in Internet Sales All Countries. In the
Data preview pane, click the drop-down box next to the OrderYear column title
to view the context menu. Now choose Number Filters > Equals to get the
Filter Rows dialog box shown in Figure 1-96. Choose Equals and ensure that you
choose a parameter from the second drop-down box, then select the
InternetSalesYear parameter. Click OK when done and observe that the Internet
Sales query now only contains data for the year set in the parameter. The
generated M code is shown in Listing 1-21.

FIGURE 1-96 Filter Rows dialog

LISTING 1-21 Filter Rows with Parameter M code
Click here to view code image

= Table.SelectRows(#"Changed Type", each [OrderYear] = InternetSalesYear)

Now enhance the parameter by making the user choose from a list versus
hardcoding values.

https://calibre-pdf-anchor.a/#a855

1. To make this modification, Click Manage Parameters and configure the
Parameter values for InternetSalesYear as shown in Figure 1-97. Be sure that in
the dialog box that you have the InternetSalesYear parameter highlighted on the
left.

FIGURE 1-97 Manage Parameters dialog

2. Now the values for the parameter are restricted to the list of values you provided.
To verify, observe the data in the Internet Sales All Countries query.

Lastly, make one more change that drives the parameter values from a dynamic list
rather than a hardcoded one as you just did.

1. First, you need to create a list of values by making a list. To do this, duplicate the
Internet Sales All Countries query. Highlight the Internet Sales All Countries
query, right-click on it and select Duplicate from the context menu.

2. Rename the query to ListValidYears.
3. Remove the Filtered Rows step from Applied Steps in the Internet Sales All

Countries query.
4. In the ListValidYears query, highlight the OrderYear column.
5. Then in the Transform tab > Any Column group > choose Convert To List.
6. Now you have a new tools tab named List Tools. From here, select Transform >

Manage Items > Remove Duplicates, which gives you a list of years that are
valid for that dataset.

7. Open the Manage Parameters dialog and change the Suggested Values to
Query and the Query drop-down to ListValidYears.

Format data
Data often needs to be formatted for final presentation. The format functions can be
found in the both the Transform and Add Columns tabs, in the From Text grouping.

Lowercase Returns the lowercase of a text value.
Uppercase Returns the uppercase of a text value.
Capitalize Each Word Returns a text value with first letters of all words
converted to uppercase.
Trim Removes any occurrence of spaces at the beginning or end of a string.
Clean Returns the original text value with non-printable characters removed.
Add Prefix Adds a prefix to the text you are working with.
Add Suffix Adds a suffix to the text you are working with.

Skill 1.3: Cleanse data
When performing analysis, it is important to first ensure that you are working with
data that is fit for this purpose. This involves taking any necessary steps to improve the
quality of data before using it. Data cleansing, as it is commonly known, is the process
of detecting and correcting or removing data from a data set, before use, if it not fit for
purpose. It is very common for data values to be missing, incomplete, or inaccurate.

It is often up to you as the analyst to make the determination as to when data does
not fit your needs and to act. Fortunately, Power Query has a vast array of functions
that allow you to clean data, manage incomplete data by replacing values, filling in
missing values, keeping rows, removing rows and even invoking sophisticated
functions that can be used to detect business rule violations within data fields.

In addition to managing data quality issues, Power Query can help to clean up data
that is delivered to you in the form of reports that often need some cleanup prior to you
getting at the data that is contained within them.

This section covers how to:

Manage incomplete data
Handle data received as a report

Manage incomplete data
In this example, extract competitor sales data from a table in an Excel spreadsheet that
has missing data and an incorrect header. You also need to replace from data in one of
the cells with text that makes more sense for the users when they are performing
analysis as someone clearly made some personal comments in one of the fields.

Follow these steps to cleanse this data:

1. From within in Excel, navigate to Data > Get & Transform Data > Get Data >
From File > From Workbook.

2. In the Import File dialog box, navigate to \Chapter 1\Excel\Manage incomplete
data.xlsx and click Open.

3. In the Navigator, choose tblCompetitorSales and then click Edit. When you
move to the Query Editor, your Data preview pane should look like Figure 1-98.
Notice that the header is not correct and that Power Query was not able to
determine data types for two of the columns as denoted by the Any data type icon
ABC123.

FIGURE 1-98 Data preview pane

4. The first activity to perform is to Promote Headers since the items in Row 1
appear to be your headers. To do this, go to the Transform tab > Use First Row
As Headers.

5. Change the Data Type for OrderYear to Whole Number and Total Sales to
Currency.

6. Next, it appears the Year columns should repeat itself until the data in the rows
moves to the next year. To do this, ensure the OrderYear has focus and go to the
Transform tab, Any Column group, Fill Down. Notice that there is also an
option to Fill Up should the use case arise.

7. Now let’s get rid of the portion of the text that says (look bob) in the
EnglishCountryRegionName field. Go to the Transform tab > Any Column
group > Replace Values. When the dialog box opens, ensure to Value To Find is
“(look bob)” without the quotes and the Replace With is an empty string. (Do
not put anything in the box.)

8. Now we should ensure that the EnglishCountryRegionName has no blank
characters at the beginning or end of each value. Highlight the column and go to
the Transform tab > Text Column group > Format > Trim.

9. And finally Rename the query from tblCompetitorSales to CompetitorSales.
10. Once you are done, be sure to review the M code generated by these steps.

Handle data received as a report
Often when you are asked to perform analysis, it can be hard to find a data source to
support it that comes in the traditional rows and columns format. Sometimes the best
way to get the data is to have someone just run a report for you and then to perform the
work of cleaning things up so that you can get at the data it contains.

Unpivot data
In this example, take a report that has been made available to you and perform the
steps to make the data ready for analysis.

Follow these steps to cleanse this data:

1. From Excel, navigate to Home > Get Data > From File > From Workbook.
2. In the Import File dialog box, navigate to \Chapter 1\Advanced Example

3\Pivot Examples\Product Category Sales By Year and Month Pivot
Report.xlsx and click Open.

3. In the object Navigator, choose Sheet 2 and then click Edit. When you move to
the Query Editor, your Data preview pane should look like Figure 1-99.

FIGURE 1-99 Data preview pane with initial data load

4. First, you need to remove the rows at the top of the report. To do this, go to the
Home tab > Reduce Rows group > Remove Top Rows. When the Remove Top
Rows dialog box opens, choose 2 as the number of rows.

5. Next, you need to Transpose the table. Click Transform tab > Table group >
 Transpose.

6. Now Remove the column named Column1.
7. Fill down Column2 by clicking the Transform tab > Any Column group > Fill

Down.
8. Promote the first row to Headers since the items in Row 1 now appear to be your

headers. To do this, choose the Transform tab > Use First Row As Headers.
9. Now, you need to remove the totals rows in Column1 (notice that the Column1

name is now back, even though it is not the same column) by filtering. You can
do this by manually selecting the values, but this would not be flexible going
forward. To be more dynamic, you first need convert the data type of Column1
to Text so that you can take advantage of a wider range of filtering options as the
Any data type only has a few options for filtering.

10. You are now ready to filter the rows out. Right-click Column1 and in the context
menu, navigate to the Text Filter option, and in the sub-menu, choose Does Not
Contain.

11. In the dialog box, type Total.
12. The goal of this step is to take the values in each of the categories and unpivot

them into one row per Year, Month and Category. To do this, ensure that
Column1 and Row Labels are selected in the Data preview pane. Now select the
Transform tab > Any Column group > Unpivot Other Columns.

13. Rename the columns and change the data types as below:

Column1 Name=Year and Data Type=Whole Number
Row Labels Name=Months and Data Type=Text

Attribute Name=Product Category, Data Type=Text
Values Name=Sales, Data Type=Currency

14. Filter out the Grand Total column by clicking the drop-down box next to the
ProductCategory field name > select Text Filters > Does Not Equal. When the
dialog box opens, type Grand Total.

15. Rename the query from Sheet2 to UnpivotExample.
16. Save your work by going to Home tab > Close group > Close & Load.
17. In the Import Data dialog, choose to Only Create the Connection and check the

Add This Data To The Data Model check box.

Pivot data
Now suppose that you want to Pivot a data set.

Follow these steps to Pivot your dataset:

1. In the Queries pane, click on the UnpivotExample query, then right-click and
choose Reference from the context menu.

2. Rename the new query from UnpivotExample (2) to PivotExample.
3. The goal of this step is to move the Product Category values and move them into

column headers with their associated values below. In the Data preview pane of
the new query, highlight the Product Category field. Now click the Transform
tab > Any Column group > Pivot Column.

4. In the dialog box that opens, choose Sales as the Values Column and select Sum
as the Aggregate Value Function in the Advanced tab. Once you are done, Click
OK.

5. In each of the three resulting columns, Replace the null with the number 0, since
this is what this analysis requires.

FIGURE 1-100 Data preview Snippet from end of last exercise

Thought experiment

In this thought experiment, apply what you’ve learned in this chapter. Each Thought
experiment is directly followed by a Thought experiment answer.

1. When loading data into your model you use the Query Editor and you select Load
To. You are asked to select how you would like to view this data in your worksheet.
Which selection will not load the data to a traditional Excel object?

A. Create Connection Only
B. Table
C. PivotTable Report
D. PivotChart

2. The marketing department has asked you to perform some analysis of 2017 sales.
They have given you access to their Azure SQL Database which contains 1.2
million rows. What options do you have for importing this data into Excel knowing
that they want to analyze all the data?

3. In which version of Excel was the Excel Data Model introduced? What was it
originally called?

4. How many data models can a workbook have?
5. Name the four valid text file formats that you can find in Get & Transform.
6. If you want to be able to choose related tables when connecting to a SQL Server

Database, what two things need to be in place for the related tables functionality
work?

7. When you create a connection to an external data source such as an Analysis
Services Database, where is connection information stored?

A. Office XML (.oml File)
B. Office Data Connection File (.odc)
C. ODATA File
D. ODBC

8. Which Data Source in Get & Transform Data allows you to connect to live data?

A. Analysis Service Tabular
B. Analysis Services Multi-Dimensional
C. Text Files
D. Web Page

9. When ingesting files using the From Folder or From SharePoint Folder, what
characters must the files share?

10. What is Query Folding?
11. Which two ways can be used to reduce the number of rows in a data set?

A. Filter Functions
B. Remove Columns
C. Parameters
D. Extract

12. What is the difference between the Extract Power Query Function that exists on
the Transform tab versus the Add Column tab?

Thought experiment answers
1. Answer A: Create Connection Only creates a connection to the source only. Data is

not loaded to a Table, PivotTable Report, or PivotChart, but you do have the option
of loading the data to the Excel Data Model.

2. The question said that the data is imported into Excel. Given this, the Excel Data
Model is your only option as traditional Excel spreadsheets have a 1,048,576-row
limit.

3. The Data Model was first introduced into Excel 2010 as PowerPivot. The two
terms are still used interchangeably.

4. Each Excel workbook may only have one data model
5. Text, CSV, JSON, and XML.
6. First, the database must have referential integrity in place, and second you need to

include relationship columns in the SQL Server Database connection configuration
window.

7. Answer B: Office Data Connection File.
8. Answers A and B: Analysis Service Tabular and Dimensional.
9. The files all must share the same structure.

10. Query folding is when Power Query converts its transformations in the Native
query language of the data source.

11. Answers A and C: Filter Functions and Parameters. Remove columns does not
remove rows, and Extract is used to remove portions of text fields.

12. Like many functions, it is important to know the context in which you are using it.
If you have chosen a column as the subject of an Extract, know that if you do this
from the Add Column tab that a new column with the extracted value is created. If
you do this from the Transform tab the column value is replaced with the newly
extracted value.

Chapter summary
A Data Model is used to integrate data from multiple sources into one or more
tables inside an Excel workbook. Tables are then related so that Data Models can

be used to provide tabular data that can be used by PivotTables, PivotCharts, and
Power View reports.
When importing data using a SQL database, you can optionally choose to write a
native query instead of selecting object by object. This can be convenient when
complex queries have already been written that you can reuse.
When importing data from text files, Power Query tries to determine the File
Locale, Delimiters also try to detect data types for each column.
Excel can connect to the following Azure sources which commonly store data
that can be used in Analysis, Azure SQL Server, SQL Data Warehouse, Data
Lake Store, HDInsight, and BLOB and Table Storage.
Privacy Levels are used to Isolate Data sets from each other.
M is a functional case sensitive language that used to manage the data shaping
process in Power Query. It is generated by the GUI are as you perform
transformation and cleansing tasks. M code can be viewed in the Formula Bar or
through the Advanced Editor.
When creating Applied Steps, you can add step name of your choosing and a
description through the Step Properties dialog.
You can create columns from example tries to identify patterns in your data as
supplied by you to accelerate the M code writing process.
You can create custom functions in M and then call them row by row using the
Invoke Custom Function call.
Data for reporting can be formatted using Format functions such as Uppercase,
Lowercase, Capitalize Each Word, Add Prefix/Suffix, Trim, and Clean.
The Extract functions allow you to remove certain portions of text fields.
If a column contains XML or JSON, you can use Parse XML or JSON to expand
values.
Query Dependencies is useful for viewing how your queries relate to each other.
This is especially important as solutions grow.
The Folder data source is useful way to combine one or many files from a
directory if they all share the same structures.
The Group By function can be used to aggregate data sets for use in the data
shaping process or for consumption in the data model.
Filters are used to remove entire rows that do not meet a specified criterion.
Filters are specific to each data type in M. The most commonly used Filters are
for Text, Number, and Date.
Parameters are useful for enabling filtering of data in Power Query. Parameters
can come from ad-hoc manual entry, a list of values as set-up in parameter
management, or they can come from a query.

Power Query has mechanisms to easily Pivot and Unpivot data sets.

CHAPTER 2
 Model data

Data modeling is one of the most important, yet often overlooked, tasks that
needs to be undertaken when building any analytical solution or using any tool.
How a model is designed from the ground up is one of the largest contributing
factors to driving usability and ultimately adoption from an end-user community.
The more intuitive a model is, the greater the likelihood that the model will be
used—and will be used correctly and predictably by your users. The focus of this
chapter is to review the methods used to create a data model that not only
performs well but is easy to understand and use from an end-user perspective. In
this chapter, we look at creating an Excel data model and then iteratively
enhancing the model to promote ease of self-service while considering how to
make it perform.

Skills in this chapter:
Skill 2.1: Create and optimize data models
Skill 2.2: Create calculated columns, measures, and tables
Skill 2.3: Create hierarchies
Skill 2.4: Create performance KPIs

Skill 2.1: Create and optimize data models
In Chapter 1, “Consume and transform data by using Microsoft Excel,” you
reviewed how to load shaped and cleansed data to the data model. The discussion
at that point revolved around how to take the work that you performed in the
data-shaping process and make it available for end-user consumption. Recall that
you can take data from the shaping process and import it into traditional Excel
objects or the Excel data model. The focus of this skill is continuing the
discussion of building and enhancing the data model so that it is production-
ready. The act of performing the load is just the first step in this process. Once
data is loaded, you need to determine how data is related and then create and
manage those relationships. Managing relationships is an important part of
modeling because it is the process that enables you to bring your data together in
a meaningful manner. While doing this, you should always be planning to
optimize your models for reporting, as most models tend to grow in breadth and

depth over time. In practice, this is a highly iterative process, as you will cycle
back and forth between the topics in the three chapters of this book as you
continually refine models for end-user consumption.

This section covers how to:

Understand the Excel data model
Perform get & transform
Manually enter data
Create automatic relationships
Create manual relationships
Manage data relationships
Optimize models for reporting

Understanding the Excel data model
Before you dive into the data model itself, it is a good idea to take a tour of the
Power Pivot interface where you will spend the most time working with the data
model. As a note, throughout this book and online you will hear the data model
and Power Pivot used interchangeably. Figure 2-1 shows the Data View screen,
which is the default screen you see when you navigate to the data model from
within Excel. Each numbered callout bubble in the Figure maps to a description
in the numbered list immediately below the Figure. When you get to the Skill on
relationships, the Diagram View will be described as the main location to Manage
Relationships in your model.

FIGURE 2-1 The Power Pivot Data View screen

1. Ribbon The ribbon is where you will find the many commands you will use
to enhance the data model. This includes bringing data in, optimizing the
model for reporting, adding DAX functions, managing hierarchies, and so
on. Scroll through each of the tabs to look at the various functions that are
available. Each of these will be covered in the remainder of this chapter and
in Chapter 3 “Visualize data.”

2. Formula Bar The Formula Bar is used to add and manage DAX formulas
for calculated columns and measures.

3. Data View The Data View provides a preview of the data that is loaded into
the data model. Column headers that have been brought from a source or
through the Query Editor are colored green, and any new DAX-calculated
columns that you create will have a black column header. The calculation
area can be toggled on and off in the ribbon by navigating to Home tab,
View group, and clicking either the Data View or Diagram View
commands (only one of these two views can be open at a time).

4. Calculation Area The Calculation Area is where measures—both explicit
and implicit—are located. As you will see when you create a measure, you
create it in the context of a table which is its home table, used mainly for
organizing measures logically. In practice, you can create a measure in the
calculation pane of any table; how it is calculated will not change. The
Calculation Area can be toggled on and off in the ribbon by navigating to
Home tab > View group >and clicking the Calculation Area to show or
hide it, depending on its current visibility.

As was touched upon in Skill 1.1 “Import from data sources,” the Excel data
model first appeared in Excel 2010 as a separate add-in called Power Pivot. The
data model could be used indirectly (and still can be) even though a user might
not have enabled the add-in, as Excel attempts to nudge users toward more
optimal storage means. You can see this behavior if you try to create a PivotTable
using multiple Excel tables. Excel will notify you that to use multiple tables in
your Analysis, a new PivotTable needs to be created using the data model.

With the advent of the data model, Excel now has two distinct places where
data can be stored. It can either be stored in native Excel objects such as tables,
ranges or sheets; or within the Excel data model. Traditional users of Excel will
be very familiar with loading data in traditional objects, as this has been the sole
way to store data for many years.

So, what is the data model from a technical perspective? Effectively, the data
model is the Analysis Service tabular engine running inside of Excel, which is
also referred to as the xVelocity Engine. It is also a distinct storage structure from
Excel, and you need to keep that in mind when performing work.

Advantages of the data model
Knowing this is great, but it does not address some of the advantages of using the
data model over traditional means. Some of the major advantages are:

Overcomes Excel’s row limit Native Excel only allows for 1,048,576 rows
of data. Most modern analysis goes well past this limit, and users typically
had to aggregate data to fit under this limit. The side effect of this was that
the manipulated data often became less useful as more and more questions
were asked.
Data compression via columnar database structure Data is stored in
columns versus rows as in a traditional database management system. Keep
in mind that it is still displayed as rows and columns in the Data View. The
advantage of columns-based storage is that in most analytic situations, users
are interested in a few columns of data for reports. This storage method leads
to highly compressed models and supports fast queries.
In memory The model is loaded and compressed into memory which
enables very fast query response times over large data sets.
Promotes centralization of logic As you will see in the section on
optimizing models for reporting in this chapter, the data model helps to
promote centralization of business logic and provides a central means to
optimize reporting that all downstream reports can share.

Composition of the data model
There are many other benefits of the data model that are described briefly below.
Each of these benefits maps to a component of the data model, and with that, you
need to understand what comprises the data model. A brief synopsis of the objects
and each is discussed in detail through the remainder of this book.

Tables Data is stored in tables (do not confuse with Excel tables) within the
model. These are columnar in nature and are loaded into memory.
Columns from source systems These are columns from source systems that
have been brought in 1 for 1 or may have undergone shaping.
Calculated columns These are columns that have business logic built into
them and are created using the DAX language. Keep in mind that these
might have also gone through some steps that optimize the column for
reporting, as will be discussed later in Skill 2.2 “Create calculated columns,
measures, and tables.”
Relationships These relate various tables together so that data can be
retrieved from multiple tables when performing analytics. These are similar
to VLOOKUPS, except that they are much more performant and flexible.
Measures These are aggregates of data that are defined via business logic.
They are created using the DAX language. Keep in mind that these may
have also gone through some steps that optimize the column for reporting, as
will be discussed later in Skill 2.2.
Hierarchies These are structures that enable users to easily and consistently
drill up and down within data structures.
KPIs Key performance indicators are visual measures of performance that
are based on measures within the data model.
Perspectives Perspectives allow you to create custom views of data that you
define for a user group or business scenario. This makes it easier to navigate
large data sets as they can be sectioned to help provide focus.

Other data model facts
Below are a few other data model facts:

Power PivotTables are read-only Unlike Excel tables which are both read
and write; Power Pivot data is not directly editable. If you need to edit data,
you will either need to do this back at the source or have sources that you
create to augment analysis that are under your control. You will see an
example of this in the section titled "Manually Enter Data."

One data model per Excel workbook An Excel workbook can only have
one data model.
A data model can contain one or many tables You are allowed more than
two million tables, which should be more than enough for most needs.

Now that you have seen what the Excel data model is and why you would want
to use it, you will now look at how to build out the components of a data model,
populate the data model, and then consume it for reporting.

MORE INFO DATA MODEL SPECIFICATION AND LIMITS
For more information regarding data model specifications and limits, read the
following: https://support.office.com/en-us/article/Data-Model-specification-
and-limits-19aa79f8-e6e8-45a8-9be2-b58778fd68ef.

Get & Transform
You spent the better part of Chapter 1 learning how to connect to various sources
systems, choosing what data to extract, and then performing any necessary
transformation and cleansing activities. Most of this was driven through the Get
& Transform Data function. It is also possible to take data from external sources
and load them into the data model using functionality within Power Pivot.

Loading data directly from Power Pivot using a new connection
There are several ways to get into the data model. With Excel open, you can go to
the Data or Power Pivot tabs and follow one of these paths:

Data tab > Data Tools group > Manage Data Model
Power Pivot tab > Data Model group > Manage

Once you have followed one of these paths, you will be presented with a screen
like the one in Figure 2-2.

https://support.office.com/en-us/article/Data-Model-specification-and-limits-19aa79f8-e6e8-45a8-9be2-b58778fd68ef

FIGURE 2-2 Power Pivot window highlighting the Import Data functions

You can see the following options as highlighted in Figure 2-2:

From Database
From Data Service
From Other Sources
Existing Connections

NOTE LOADING DATA VIA POWER PIVOT
Many of the import functions shown here have been replicated and enhanced
in Get & Transform using the Query Editor, which has a much richer
interface and capabilities. They are covered here because they potentially are
subject to examination. For more information, see
https://support.office.com/en-us/article/Get-data-using-the-Power-Pivot-add-
in-f0431904-aab1-49c3-b50c-c6f5d4517a66.

Of the three options, the From Other Source covers all the available sources
and presents them in one window as shown in Figure 2-3. You have the option to
connect to data in one of these four categories:

Relational databases
Multidimensional sources
Data feeds
Text files

https://support.office.com/en-us/article/Get-data-using-the-Power-Pivot-add-in-f0431904-aab1-49c3-b50c-c6f5d4517a66

FIGURE 2-3 Table Import Wizard data source selection screen

In this example, you will Import from SQL Server database. You do this one
table at a time so that you can see multiple ways to import data using SQL and
how these impact connections.

1. Open a new workbook and then navigate to the data model.
2. Navigate to the Home tab > Get External Data group > From Database >

From Microsoft SQL Server command as shown in Figure 2-3.
3. In the Table Import Wizard–Connect To A Microsoft SQL Server

Database dialog box, configure the following and then click Next when
complete.

Friendly Connection Name Chapter 2 SQL Server Sample
Connection.
Server Name Your SQL Server Name.

Log On To The Server Use the authentication method that your
database uses.
Database Name AdventureWorksDW2016.

4. In the Table Import Wizard – Choose How To Import The Data window,
choose Select From A List Of Tables And Views To Choose The Data To
Import and then click Next. Note that you can write a SQL Query should
you have the expertise to do so by choosing Write A Query That Will
Specify The Data To Import.

5. In the Table Import Wizard–Select Tables And Views window, choose the
following tables and then click Finish. Note that on this screen you can also
add a Friendly Name to each table you import and you also can filter
columns and rows from the final data set by clicking the Preview & Filter
button and then configuring which columns and rows you want in your data
set. Choose these tables to import:

DimProduct
FactInternetSales

6. The Import process window will become active, and when complete you
will see the Table Import Wizard–Importing window as in Figure 2-4.
Click on the Details hyperlink which will show the following message:
Relationship: dbo.FactInternetSales[ProductKey] ->
dbo.DimProduct[ProductKey] - Status: Success, Active - Status: Success,
Active. This lets you know that a relationship has been created between
FactInternetSales and DimProduct and that it is active. More to come on this
shortly. Click Close when you are done with this window.

FIGURE 2-4 Import status window

7. Now navigate to Home tab > View group > Diagram View and in Figure 2-
5, you will see the two imported tables and how they are related.

FIGURE 2-5 Diagram view for the two imported tables

8. Save this file with your book samples files as
\Chapter2\CH02Demo0102.xlsx with your book sample files and keep it
open for the next example.

Suppose that you now wanted to import the DimProductSubcategory and
DimProductCategory tables because you realized that you forgot them in the
previous step. You could repeat the same steps as before and only choose these
two tables from the list of tables. If you did it this way, you would need to enter
the same connection information again. The problem with this is that you now
have multiple connections to the same database which becomes a maintenance

challenge. If you use one connection and anything about that connection changes,
you only need to change the configuration in one place.

In this example, you Import from SQL Server Database using an existing
connection. We will bring in the DimProductSubcategory and
DimProductCategory using the previous connection and file that by following
these steps:

1. If not already done, open the \Chapter2\CH02Demo0102.xlsx you built in
the previous example.

2. From within the data model, navigate to the Home tab > Get External Data
> Existing Connections, and you will be presented with the Existing
Connections–Select An Existing Connection dialog in Figure 2-6. You
will notice that the Workbook has a connection to the database listed under
Workbook Connections. Also, you have the Power Pivot Data
Connection where you can not only edit the tables selected but the server
connection information as well.

FIGURE 2-6 Existing Connections

3. With Chapter 2 SQL Server Sample Connection highlighted in the Power
Pivot Data Connections section, you will notice the relevant options are:

Refresh Click this to refresh all the data that is part of the connection.
Edit This will allow you to edit the server connection details.
Open You will be taken to the Table Import Wizard when you can add
in and modify objects.
Delete Delete the connection.

4. Click Open.
5. In the Table Import Wizard – Choose How To Import The Data, choose

Select from a list of tables and views to choose the data to import and click
Next.

6. In the Table Import Wizard – Select Tables And Views window, choose
the DimProductSubcategory and DimProductCategory tables and then
click Finish. After the tables have been uploaded, click Close.

7. Now navigate to Home tab > View group > Diagram View and you will see
that you have four tables in the model as in Figure 2-7.

FIGURE 2-7 Data model with the four tables imported

8. Save your work and then close the workbook.

Manually enter data
As mentioned earlier, the data model is a read-only construct, unlike data that is
stored in Excel objects. If you need to make your data editable, you will need to
do that though Excel objects or back at the source.

Often you will be in situations in which there is no real source for data that you
want to you in your analysis, so you will need to manually create one and perhaps
maintain it in a spreadsheet. If the data is for the sole purpose of supporting
analysis in your current workbook, you might want to look at storing the data in
an Excel table inside the workbook that houses your data model.

In this example, you manually enter data into Excel tables and import them into
the data model. Follow these steps to do this:

1. Open the \Chapter2\CH02Demo03Start.xlsx file, which is supplied in this
book’s sample files. Notice that on Sheet1 of the workbook, there are two
Excel tables named Sales and SalesPerson. Neither of these tables are in the

data model. You can check this for yourself by navigating to the data model
if you choose to do so.

2. Now let’s add these tables to the data model. Highlight any Cell within the
Sales Excel table and then click the Power Pivot tab, and from the Tables
group, select Add To Data Model. After a moment, you will be taken to
Power Pivot, and you will see that the Sales table has been added to the data
model.

3. Do the same with the SalesPerson table. As a note, if these had not been set
up as tables, you could have clicked Add To Data Model, and then you
would have been prompted to Choose A Range Of Data so that you could
create the table for Excel to add to the data model

4. The data model tables themselves are not editable, but in this scenario, you
can edit the Excel tables. In the SalesPerson table, add a new row with the
following values:

SalesPersonID: 3
SalesPersonName: Hernady, Robert

5. Go back into Power Pivot and click Home tab, Refresh to refresh the
currently active table or Refresh All to refresh all tables.

6. Now that you have imported this data into the data model, let’s look at the
resultant connection information. In Excel, navigate to the Data tab,
Queries & Connections group, and click Queries & Connections (see
Figure 2-8). In this figure, notice that ThisWorkbookDataModel
connection is created each time a data model is created. Also, you see the
two workbook connections that you made from the Excel tables to the data
model.

7. Now save the file using Save As \Chapter2\CH02Demo03End.xlsx and
then close the workbook.

FIGURE 2-8 Queries & Connections pane

NOTE LINKED TABLES
Linked tables in Power Pivot and the Excel data model have been replaced
with refreshable tables. Previously, adding data to the data model using the
above steps would create a linked table. Now Excel will create a refreshable
table in the data model instead. Any existing linked tables in your model will
be automatically converted to refreshable tables. For more information, see
the following article at https://support.office.com/en-us/article/Where-are-my-
linked-tables-in-Power-Pivot-7356CF3C-1423-49FF-877E-6ABC6824D182.

Manage data relationships
Moving from traditional Excel methods for data preparation and modeling to the
new methods available in Power Query and the Excel data model requires some
unlearning of traditional methods. In traditional means, data was often matched to
a single object because PivotTables could only consume data from one table at a
time. This often made the initial modeling process and subsequent analysis a
challenge because users typically ended up with mixed grains of data in their
tables. This can also be a dangerous situation for users to consume, especially if
they are unaware of these mixed grains, which can lead to miscalculations.

Traditional integration
To overcome the limitation of PivotTables only being able to consume from one
location, users were forced to bring all data, regardless of grain, into one data
structure. The technique was to use VLOOKUP to bring columns one by one
from a source table into a target data table. The challenges were:

https://support.office.com/en-us/article/Where-are-my-linked-tables-in-Power-Pivot-7356CF3C-1423-49FF-877E-6ABC6824D182

VLOOKUP can be cumbersome to use.
VLOOKUP can be slow because they are recalculated as the workbook
changes.
They were only able to access one column from the referenced table,
meaning that if you want multiple columns of data from a source that you
would need two or more VLOOKUPs, thereby adding to the first challenge.

What are relationships?
A relationship is a connection between two tables on one column in each table of
the data model. A relationship is used to traverse between tables as the user
navigates data in the data model. Unlike a VLOOKUP, calculating how to move
between tables is done only when needed, which means relationships perform
better than VLOOKUPs.

Figure 2-9 shows the Diagram View within Power Pivot. The numbered callout
bubbles correspond to the numbered list below. The main areas are:

1. Ribbon Same as it was in Data View.
2. Relationship window This is where you can view tables, columns,

hierarchies, and the relationships between the tables. From a Relationship
perspective, you can also perform several management tasks, such as
inactivating, deleting, or editing a relationship on the diagram.

3. Fit To Window and Zoom slider The Fit To Window button will take your
model and size it to fit inside the current window. The Zoom slider enables
you to zoom in and out of regions on your diagram.

4. Switch View buttons These toggle buttons enable you to switch between
Data and Diagram views like the buttons in the ribbon.

FIGURE 2-9 The Power Pivot Diagram View screen

There are two ways to create a relationship. Either the data model will
automatically create the relationship for you, or you can manually create them on
your own. Either way, care needs to be taken when specifying relationship
because they are the glue of the data model. You will see how to create
relationship both ways shortly.

One thing that you will notice when you begin to write DAX against the model
is that unlike writing SQL where you specify joins at query time, you specify
them when building the data model. This means that when you write DAX, the
model already knows how to relate the tables, thus saving you a step when
writing queries and formulas.

To dive deeper into relationships, open the \Chapter2\Adventure Works Data
Model.xlsx file and navigate to the Diagram View in the data model, which
should look like Figure 2-9, which has been rearranged for display purposes.

Focus in on the DimProduct and FactInternetSales tables and notice that
there is a line between the tables which represents the relationship. Although not
immediately apparent, there are five other attributes worth pointing out:

Related Tables These are the tables that are involved in the relationship. In
this case, it is DimProduct and FactInternetSales.
Related Columns When you hover your mouse over the line, you will
notice that the ProductKey column in both tables is highlighted. This is the
column to which these two tables are related.
Cardinality This shows that for every row found in one table, how many
equivalent rows are in the other. You will see a 1 next to the DimProduct
table and a * next to FactInternetSales. This means that an individual row in
the product table has zero or many related rows in FactInternetSales. In other
words, a product might not have sold at all (zero) or may have sold many
times (many). As a note, Excel only supports one-to-many relationships.
Relationship Direction This shows which way the filters flow when applied
to a table. In this case, filters flow from the Dim table to the Fact table. As a
note, Excel only supports filtering in one direction going from the one side
to the many side.
Status This shows whether the relationship is active. When there are
multiple relationships between two tables, only one may be active. An
Active relationship is indicated with a solid line, and inactive relationships
are shown as a dashed line.

Double click or right-click on the line between FactInternetSales and
DimProduct and choose Edit Relationship to be presented with the Edit
Relationship dialog box in Figure 2-10. This shows us the relationship that was
automatically created when you loaded the first two tables. The relationship has
the following definition:

Source Table This is the Fact table in the relationship with the
FactInternetSales.
Foreign Key Column This is the column in the Source Table that you will
use to look up values from the Related Table. In this case, it is the
ProductKey. Notice that this column is highlighted blue, which shows that
this is the column that you want to use in the relationship.
Related Table This is the table you will use to get values. In this case, the
related table is DimProduct.
Related Column This the Primary Key column of the Related Table. In this
case, it is ProductKey. Notice that this column is highlighted blue, which
shows that this is the column that you want to use in the relationship.
Status It is marked as Active.

FIGURE 2-10 Edit Relationship dialog box

Requirements for a relationship
For a relationship to be created, several criteria must be met (see Table 2-1).

TABLE 2-1 Requirements for a relationship

Criteria Description
Single
Column

Only a single column in each table can
be chosen. Composite relationships are
not allowed. If you have a composite
key relationship, you may need to look
at combing those values into one field
using concatenation.

Unique
related
column

The column that is the related column
must contain unique values. A column
cannot contain multiple blank, null, or
empty strings.

Data type
compatibility

The related columns must have
compatible data types. Data types will
be discussed in Section 2.2.

Cardinality The cardinality of the relationship can
only be 1:1 or 1:M (one-to-many).
When you create the relationship, the
engine will inspect the column values in
each to verify whether this criterion can
be met.

Unsupported in a table relationship
The following types of relationships are unsupported in the data model:

Many to many A data model does not support many to many relationships
between tables.
Composite Keys Relationships between two tables need to be on single
columns in each table. Unlike SQL tables that can contain a multi-part key,
this is not allowed in a data model.
Self-Joins Relationships from a table to itself are not allowed. This type of
situation commonly arises when modeling Employee Hierarchies in SQL
databases.

 EXAM TIP

Watch for these types of questions on the exam. Often an invalid relationship
will be presented, and you be asked what is wrong with what is being presented.
Being able to visually detect these attributes quickly is invaluable.

Multiple relationship between tables
Multiple relationships between two tables are allowed in a data model. However,
no more than one relationship can be active at any given time. Any other
relationships are marked as Inactive, but they may be specified in queries and
formulas. An example of this in the Adventure Works model lies in the existence
of multiple date fields in the Internet Sales Fact table (see Figure 2-11). You will
notice that FactInternetSales contains an OrderDateKey, ShippedDateKey, and
DueDateKey, which are all dates that relate to the DateKey in DimDate. If you
imported DimDate and FactInternetSales together, you will notice that three
relationships are created, but only one is active. In the supplied Adventure Works
Data Model.xlsx the active relationship is between OrderDateKey and DateKey.

In this example, you will create multiple relationships between tables.

1. In a new blank workbook, follow steps 1, 2, 3, and 4 from the Import from
SQL Server database example to establish the connection the SQL Server
database.

2. In the Table Import Wizard–Select Tables And Views window, choose the
following tables and then click Finish.

DimDate
FactInternetSales

3. One the Import is complete, click Close and open Diagram View in Power
Pivot. You should see a screen like Figure 2-11. In this example, the
relationship between DueDateKey is active.

4. Save the workbook as \Chapter2\CH02Demo04.xlsx.

FIGURE 2-11 Multiple relationships between two tables

NOTE QUERYING ACROSS TABLES
When you query across tables in a data model, the Active relationship is
what is used when you utilize the RELATED and RELATEDTABLE
functions. To force DAX to use an Inactive relationship, you will need to
use the USERELATIONSHIP function.

Create automatic relationships
When importing data using Power Pivot, as described earlier in this chapter,
relationships are automatically created if there is supporting metadata in the
source systems. In these examples, Primary Key and Foreign Key relationships
existed, which formed the basis for creating the relationship. In Figure 2-4, you
can see that the last step that was performed when importing the data was that it
did a data preparation step to create the relationships.

When importing data using the Query Editor, relationships can also be created
automatically by using metadata from the underlying system, such as referential
integrity from a database management system. (See “Skill 1.1: Import from data
sources” in Chapter 1.) The following building blocks need to be in place to
enable the automatic creation of relationships:

1. The first building block is for source system referential integrity to be in
place. Without this, the data model does not have enough information to
create the relationship with the necessary degree of accuracy.

2. Second is that you configure the Import process to include relationship
columns on the initial import. Recall that when you imported data from
Databases that you were asked via checkbox if you wanted to include
relationship columns. Enabling this did two things. It enabled you to choose
related tables in the Database Object navigator and it set up the ability to
automatically create updated relationships on load, which is the next
building block.

3. Third is that you have the Query Options properly configured in the Query
Editor. In the Query Editor, select the File tab and choose Options And
Settings, Query Options. In the Current Workbook section, select Data
Load. You will be presented with the screen in Figure 2-12. In the
relationships section, you have two configurable options:

Create Relationships Between Tables When Adding To The Data
Model For The First Time Before loading data to the data model, it
finds existing relationships between tables, such as Foreign Key
relationships and then imports them with the data. This setting is turned
on by default.
Update Relationships When Refreshing Queries Loaded To The
Data Model This option exists only if Create Relationships between
tables has been selected. This will check the current relationship status
in the sources system each time a data load is performed. For example,
if you had a relationship between the Currency ID fields in the Internet
Sales Fact and Currency Dimension in the AdvenureWorks2016DW
database (which was picked up on the first load and then the Primary-
Foreign Key relationship was removed from the system), this
relationship would be dropped by the data model in a subsequent data
load. Be aware that this may add new relationships and remove
manually created ones on each load. This is turned off by default.

FIGURE 2-12 Current workbook data load query options

Create manual relationships
The preferred way to create relationships is to manually create them. This allows
you, as the developer, to verify whether the relationship that is going to be created
is correct. There are plenty of real-world examples in which there are two
columns, in two different tables, with the same names and data types but with
different underlying meanings that should not be related together automatically.
The exception to this is when relationships are being created automatically using
existing metadata from a source system such as SQL Server. There are a few
ways that relationships can be created manually.

In this example, you have two tables that have been imported into the data
model but do not yet have a relationship established. You will use drag and drop
and the Manage Relationships window to create them manually.

1. Open the \Chapter2\CH02Demo03End.xlsx file you saved earlier.
2. Open the data model and navigate to the Diagram View. You should see

two tables, one named Sales and the other SalesPerson with no
relationships.

3. To create a relationship via drag and drop, click and highlight on the
SalesPersonID in the SalesPerson table and then drag it on top of the
SalesPersonID column in the Sales table. The relationship is established per
Figure 2-13. Notice that both fields are highlighted in each table, signifying
the related columns. And finally, the relationship is one-to-many from
SalesPerson to Sales, as indicated by the * on the line next to the Sales table
and the 1 on the line next to the SalesPerson table.

FIGURE 2-13 Relationship between Sales and SalesPerson

4. Now delete the relationship by right-clicking on the line between the tables
and selecting Delete from the context menu. On the subsequent dialog box,
click Delete From Model.

5. Now re-create the relationship using Manage Relationships. Highlight on
the Sales table in the Diagram View and then navigate to Design tab,
Relationships group, Manage Relationships. When the Manage
Relationships window opens, click Create.

6. Notice that the Sales table you had highlighted is the top table in the list.
Highlight on the SalesPersonID column in the Sales table. In the drop-

down box for the lower table, select SalesPerson and then ensure that the
SalesPersonID column is highlighted in that table as well. The relationship
is marked as Active, and even if you uncheck the box, it will be created as
active since it is the only relationship between the tables. When done, click
OK and then Close.

7. Save As \Chapter2\CH02Demo05End.xlsx and keep it open for the next
example.

One of the first things you should do shortly after loading tables is to check to
see if the correct relationships are in place. This is especially true if you are about
to do any reporting off the model. What would happen if you forgot to do this?
This example demonstrates what happens when you encounter a situation where a
relationship is missing.

1. If not already done, open the \Chapter2\CH02Demo05End.xlsx from the
previous example and navigate to the data model.

2. Once again, Delete the relationship because you will build a PivotTable
using these tables with no relationships between them.

3. Create a PivotTable using the data model by navigating to the Home tab and
selecting PivotTable from within the Power Pivot window. When the
Create PivotTable dialog box comes up and asks you where you want to
place the PivotTable, choose New Worksheet and then click OK.

4. In the PivotTable, drag these fields to the following locations in the
PivotTable Fields pane:

Columns: YearMonth from the Sales table
Rows: SalesPersonName from the SalesPerson table
Values: SalesAmount from the Sales table

5. When you are done with this, your screen should look like Figure 2-14.
Notice the repeating values in the Pivot and the warning in the PivotTable
Fields list. The Pivot has detected that something is wrong. To fix this error,
you can either click Auto-Detect or the Create button to manually perform
the action. When you click Auto-Detect, the Auto-Detect Relationship
process will create the relationship, and then you will notice that the pivot
reports the data as it should be reported. This process used the column
names and Data Types to help it create the relationship. Click Close when
finished.

6. Save as \Chapter2\CH02Demo06End.xlsx and keep it open for the next
example.

FIGURE 2-14 Excel PivotTable using data model without relationship
created

MORE INFO RELATIONSHIPS BETWEEN TABLES IN A DATA
MODEL
For more information and examples around creating relationships between
tables in a data model, consult the following site:

https://support.office.com/en-us/article/relationships-between-tables-in-a-
data-model-533dc2b6-9288-4363-9538-8ea6e469112b.

Optimize models for reporting
Optimizing for reporting should always be kept in mind when developing a data
model. There are many things that you, as a developer, can do to keep things
optimized so that your model performs and users stay happy. One of the great
things about the data model is that when the below techniques are used, these

https://support.office.com/en-us/article/relationships-between-tables-in-a-data-model-533dc2b6-9288-4363-9538-8ea6e469112b

configurations are stored centrally and are reused. This becomes very useful when
you move into reporting, which is the topic of Chapter 3. The time and effort put
into optimization will pay dividends because many of these tasks will only need
to be done once, centrally.

There are two components of optimization that you typically need to be
concerned with. The first is the performance and the second is usability by end-
users. You will find that these often overlap because when you make a model
more compact and focused for users, performance can benefit.

Also keep in mind that In Office 365, both SharePoint Online and Excel Web
App restrict the size of an Excel file to 10 MB. It is quite easy for data models
that contain millions of rows to get to this 10 MB limit quickly.

Here are some of the things that you can do to optimize your model from a
performance perspective:

Keep models compact and focused Bring in only the tables, columns, and
rows that will be necessary when performing the analysis. Early in a
development cycle, you might end up bringing in more data than needed, but
as clarity transpires around what will be used, begin to remove unnecessary
rows and columns. This not only helps with performance but keeps the
models digestible to end users that may be consuming your models.
Bin data where possible Columns with more unique values than others
require more memory to be stored. For example, a column that only has
values of Male and Female will take up less space than one that contains
phone numbers.
Choose an appropriate data type If you have a Datetime database column
that you import but you never need the time components for it, remove the
time component.
DAX Columns It is advantageous to use DAX measures instead of
calculated columns where possible. Measures are defined once in the model
and are evaluated only when used.
Workbook Size Optimizer The workbook size optimizer analyzes the
makeup of data model within your workbook to see if the data in it can take
less space and if possible, enables better compression. The workbook size
optimizer can be found at https://www.microsoft.com/en-
us/download/details.aspx?id=38793.

MORE INFO CHECKLIST FOR MEMORY OPTIMIZATIONS IN
POWER PIVOT AND TABULAR

https://www.microsoft.com/en-us/download/details.aspx?id=38793

The following article from SQLBI provides more details as to specific tasks
that can be undertaken to help with optimizing the memory usage in your data
models: https://www.sqlbi.com/articles/checklist-for-memory-optimizations-
in-PowerPivot-and-tabular-models/.

Making a model easy to use for your end users should always be top of mind
when designing models for consumption. The following sections outline some of
the things that you can do to optimize your model from a usability perspective.

Hide tables and columns
Only show columns and tables that are necessary for your users to use for
reporting. Unnecessary information clutters a model and makes it hard for a user
to navigate and find the information that they need.

To hide an entire table from client reporting tools, you can right-click the table
name in either the Diagram or Data View and then choose Hide From Client
Tools. Once you do this, the table name will remain in both interfaces but will be
unavailable. As the developer, you can continue to work with the table normally,
as this change only affects visibility to client tools such as PivotTable and
PivotCharts.

To hide a single column, you can right-click a column name in either the
Diagram View or Data View and then choose Hide From Client Tools. The
same rules apply to hiding both tables and columns.

Intuitive naming conventions and descriptions
A model that has easy-to-understand naming conventions is worth its weight in
gold. Choose names for tables and columns that have meaning to end users and
that are clear.

In addition to naming conventions, both tables and columns have description
properties that can be filled out in cases where further descriptions are necessary.
To do this, in the data model, ensure that Data View is open and then right-click
on any Column Name in a table or a Table tab and choose Description from the
context menu.

Synonyms
Synonyms are useful when an entity in an organization might be referred to by
multiple terms. For example, when something is sold in a retail setting, sales
might refer to that metric as sales, whereas finance might call it earned revenue.

https://www.sqlbi.com/articles/checklist-for-memory-optimizations-in-PowerPivot-and-tabular-models/

In a transaction table, you might call it sales on the physical columns, but you
would like the physical column to also go by a synonym.

To do this, in the data model, open the Synonyms pane by clicking the
Advanced tab, Language group, Synonyms. The Diagram View appears, and on
the right side of the page, you will have the Synonyms pane. In the Diagram
View, choose the table to which you want to apply a synonym. You will then be
provided a list of column names, including the table name itself in which you can
provide a comma-separated list of synonyms for the physical table or column
name.

Perspectives
As mentioned earlier, Perspectives allow you to create custom views of data that
you define for a user group or business scenario. This makes it easier to navigate
large data sets because they can be sectioned to help provide focus. With
Perspectives, you can include any combination of tables, columns, measures, and
KPIs.

To create a Perspective, open the Advanced tab and navigate to Perspectives >
Create And Manage. From here you can add, delete, and rename the perspective
and then add the tables, columns, measures, and KPIs that are required.

FIGURE 2-15 Create and Manage Perspective window

Sort By column
Sort By columns are used to provide sorting information to a column based on
another column’s value. The classic example for this is when you use month
names on a visual or within a PivotTable, their values display in alphabetic order.
Figure 2-16 shows the default behavior of the EnglishMonthName column when
brought onto the Rows of a new PivotTable. In other words, they sort using a
string sort.

FIGURE 2-16 The English month name displayed as rows in a PivotTable
using default data-type sorting

To solve the problem, you can assign the values from another column to use for
sorting. In this case, you will use the MonthNumberOfYear column.

1. Open \Chapter2\CH02Demo07Start.xlsx. You should see the PivotTable as
represented in Figure 2-16.

2. Navigate to the data model and within Data View, open the DimDate table.
3. Select the EnglishMonthName column and navigate to Home tab, choose

the Sort And Filter group, and select Sort By Column.
4. In the dialog box, choose to sort EnglishMonthName by

MonthNumberOfYear. Click OK when done.

5. Once you do this, navigate back to the PivotTable. You will notice that the
values in Figure 2-16 will now have the desired sort order.

6. Close the file without saving.

When choosing a column to do your sorting on, it is important to ensure that
the values in the Sort By column are unique for each value that you want to sort.
For example, if your table was similar to Table 2-2 and you tried to do the same
sort as described above, the sort would not work and you would get the following
error message: “Cannot sort EnglishMonthName by MonthNumberOfYear
because at least one value in EnglishMonthName has multiple distinct values in
MonthNumberOfYear.” This happens because the value of January has a month
number value of 1 and 2 when it should only have one value.

TABLE 2-2 Sample of Data Table data with values that will fail the sort

EnglishMonthName MonthNumberOfYear
January 1
January 2
February 2
February 2

NOTE SORTING BY A COLUMN FROM ANOTHER TABLE
You can only use a column from the same table to define a different sort
order. To sort by a column from a different table, first, you need to add the
column from the other table into the selected table. To add a column from
another table, add a calculated column using the RELATED DAX function.

Formatting columns
Some of the things that you can do for your columns are to format them so that
they have consistent display and behaviors when used in reporting. Formatting
options can be found in the data model‘s Home tab > Formatting group. Here
are some of the things that you can do to format columns. They are described
here, and in Chapter 3, Skill 3.1. We will use these as we work with the data
model in a reporting scenario.

Data Type The first thing that you need to take care of when data lands in a
data model is to choose the correct data type. This is important as the data
type not only has storage implications but also affects the range of DAX

functions that you can use on the column and which formats,
summarizations and categorizations are available to be applied to the
column.
Formats Formats are used to further style your data at display time. Each of
the different data types have a range of formats that can be applied.
Summarization methods With numeric-based columns, you can designate a
summarization method. This is used to determine how a column should be
displayed when it is brought onto a reporting canvas. For example, a key
column should be set to Do not summarize since it makes no sense to
perform summarizations where a column such as sales might require a
default summarization of Sum. This formatting method is in the Advanced
tab, Summarize By.
Categorization Categorization is used to provide extra information about
the column of data to a reporting tool. It can be found in the Advanced tab >
Reporting Properties group > Data Category. For example, a column
might contain a Country value, which to the data model is merely a string of
text. You add a categorization to the column so that when used in a reporting
tool, the tool knows that the column has special meaning. In this case, if you
were mapping data, the categorization can help place values on a map with
more accuracy. Note that Data Types and Categorization are two distinct
attributes of a column. The following is a list of categorizations that you can
apply to your data:

Address
City
Company
Continent
Country/region
County
Date
Image
Image URL
Latitude
Longitude
Organization
Place
Postal Code

Product
State or Province
Web URL
Custom Category

Date tables
Having a Date table is important to almost every kind of analytic you might
develop. It is very rare to write a report that does not need a time perspective.
And as you will see shortly, the time intelligence functions in DAX rely on the
existence of a well-formed date table to function properly.

Depending on where you are getting your data, a date table may or may not
exist at source for you to import and use. The Adventure Works Database that you
have been using for demonstrations already has a date table that has been built for
use with the fact tables in the model.

Look at the Adventure Works date table, and you will notice that it has an array
of fields to represent the various ways that users may want to use dates for labels
on reports, filters, or hierarchies. If you know that users will want to do such
things, it is advisable to add columns to the data table to enable this.

The purpose of this example is to augment the Date table by adding an extra
column to the date dimensions using DAX and then to mark it as a Date table.

1. Open Adventure Works Data Model.xslx, navigate to the data model and
open the DimDate table.

2. Notice the field named EnglishDayNameOfWeek, which is the full spelling
of the day of the week. Suppose that a user wants the abbreviation for
Month name and not just the full name. You would simply add the column
to the table using DAX. Add a calculated column named
EnglishDayNameOfWeekAbbr with the following formula:
= FORMAT(DimDate[FullDateAlternateKey], "DDD")

3. Now you have a new column that users can simply drag and drop onto a
report.

4. Next, it is important to Mark the DimDate table as a Date table so that when
you go to use it with the DAX time intelligence functions that this functions
properly. In Diagram View of your model, highlight on DimDate.

5. In the Design tab, navigate to Calendars group, Mark As Date Table
which will open the Mark As Date Table dialog as in Figure 2-17. Notice

that the first field that qualifies as the unique identifier of the table has been
selected, and it is of the Date Data type. Click OK to accept this setting.

FIGURE 2-17 Mark as Date Table dialog box

6. Note now that you can now change the settings by navigating to the Design
tab > Calendars group > Mark as Date Table > Date Table Settings.

7. You can now Save and Close your file.

Now suppose that you have a model such as the one above, but it does not
contain a date table. This is a very common scenario when performing analytics
and not using a source that has been dimensionally modeled. In this case, you can
create your own Date table directly within Excel. In this example, you add a date
table to the data model and mark it as date table.

1. Open \Chapter2\CH02Demo09start.xlsx and navigate to the data model.
2. In the Design tab > Calendars group > Date Table > click New.

3. A new Date table named Calendar has been added to the model. What is
interesting about this table is that it has already been Marked as the Date
table. The second thing to note is how the date range was created. The
creation process finds the earliest and latest dates that exist anywhere in data
model and then it creates a continuous range of dates from the first date of
the earliest year to last date in the last year (for example, January 1 –
December 31).

4. Close the workbook without saving.

MORE INFORMATION MORE ON GENERATING DATE
DIMENSION TABLES
For more details and examples of alternate ways of creating date tables in the
data model, see “Automatically Generating Date Dimension Tables in Excel
2016 Power Pivot.” Chris Webb is an excellent source of information around
Analysis Services, MDX, DAX, Power Pivot, Power Query and Power BI.
https://blog.crossjoin.co.uk/2015/06/26/automatically-generating-date-
dimension-tables-in-Excel-2016-power-pivot/.

Skill 2.2: Create calculated columns, measures, and
tables
You can take analytics using the data model quite far, but to really push things to
the next level, it is important to get to know Data Analysis Expressions (DAX).
Picking up the basics of DAX is straightforward to start and then, of course, can
get much more sophisticated should your models need it. The language itself is
used in many tools within the Microsoft Analytics stack. You can write DAX
queries to query Analysis Services cubes that can be placed inside of the Excel
data model or in other tools such as SQL Server Reporting Services (SSRS).

You will see how to create calculated columns and measures that have business
logic wrapped into them so that your users do not need to keep re-creating logic
over and over. This promotes reusability and consistency when analytics are
being performed, which is a big benefit. The notion here is as you build more
robust, self-service based models, you typically want to supply your users with
metrics that they can drag and drop into their reports and be maintained in one
place.

DAX itself is a functional language that is meant to resemble Excel formulas.
The premise is that DAX is aimed at making things easier for those familiar with
Excel to pick the concepts up quickly. One big difference is that Excel formulas

https://blog.crossjoin.co.uk/2015/06/26/automatically-generating-date-dimension-tables-in-Excel-2016-power-pivot

operate on cells and DAX operates on rows, columns, and tables, not individual
cells. This also improves maintainability when done properly. It is beyond the
scope of this book to cover every DAX function, but this skill will introduce you
to some of the more common functions and will provide a solid foundation from
which to build.

This section covers how to:

Create DAX formulas
Create DAX queries
Create Excel formulas

Create DAX formulas
DAX formulas are created within the data model to either help with creating
additional columns to tables through the use of Calculated Columns or by adding
Measures that serve to aggregate data. This section will walk through the major
building blocks and functions that are used when building DAX expressions.
Many of the formulas that you will use in this section will apply when you get
into the section on DAX queries. This section will cover some of the most
important functions and skills needed to pass the exam. There are more than 200
functions in DAX. It is beyond the scope of this book to cover all 200 functions.

DAX Basics
Before you jump into some of the deeper waters in the DAX space, we will do a
review of basic syntax. This includes knowing how to write a valid formula that
is free of syntax issues and uses proper data types and operators.

MORE INFO DAX BASICS AND SYNTAX
If you need a deeper dive into DAX syntax, you might want to look at
https://msdn.microsoft.com/en-us/library/ee634217.aspx. If you need a
quick start, the following link has a great introduction:
https://support.office.com/en-us/article/QuickStart-Learn-DAX-Basics-in-
30-Minutes-51744643-c2a5-436a-bdf6-c895762bec1a.

Calculated columns
To start breaking syntax down, let’s look at a calculated column. A calculated
column is added to a table in the data model by writing an expression. They take

https://msdn.microsoft.com/en-us/library/ee634217.aspx
https://support.office.com/en-us/article/QuickStart-Learn-DAX-Basics-in-30-Minutes-51744643-c2a5-436a-bdf6-c895762bec1a

up storage space in the model and are generally used for report labels (columns or
rows) or as filters and slicers, as you will see in Chapter 3. For example, they are
also useful as values if you need to display an actual calculated value in a table.
Calculated columns are evaluated on a row-by-row basis, and their values are
refreshed every time your data set is refreshed or when a value depends on
change. The syntax in Figure 2-18 is used to create a column named “Sales
Amount” in the FactInternetSales table in the Adventure Works Data Model.xlsx
file.

FIGURE 2-18 Sales Amount calculated column formula

The parts of the expression are listed below, and the number match to the
callout bubble in Figure 2-18.

1. The equal sign (=) denotes the beginning of the formula.
2. FactInternetSales[OrderQuantity] is a column from FactInternetSales table

in the model. Strictly speaking, you can omit the table name in a calculated
column, but we include it here for completeness.

3. The * is an operator that performs multiplications.
4. FactInternetSales[UnitPrice] is a column from FactInternetSales table in the

model. Once again, you can omit the table name in a calculated column, but
we include it here for completeness.

Notice that unlike Excel where you reference cells by coordinates, DAX
expressions use column names in much the same manner as you refer to values in
Excel Tables.

To add a calculated column, you can either:

Navigate to the Design tab and in the Columns group, click Add. This will
add a column to the end of the table that has focus in Data View.
Go to the far right of the table you want to add the column to and then click
the Add Column text in the table.
Right-click in the header row of the table and choose Insert Column from
the context menu.
To give the column a name, you can double-click on the name and edit it or
right-click the name and choose Rename Column from the context menu.

Measures
Measures are used to aggregate information that you want to display in a
PivotTable or PivotChart. They typically use aggregations such as SUM,
AVGERAGE, or COUNT and are written using DAX. A measure is attached to a
Home Table but can be stored with any table in the model. For housekeeping
purposes, they are generally placed in Calculation area of the table that makes the
most logical sense.

Another feature of a measure is that its value is calculated when used, which is
unlike a calculated column that is computed and stored when created. Also, its
value is influenced by the current Evaluation context which will be explained
shortly. Figure 2-19 shows the components of creating a measure.

FIGURE 2-19 Total Sales Measure formula

The parts of the expression are:

1. Measure name, which is Total Sales.
2. The measure name is followed by a colon and an equals sign; the equals

sign assigns the expression value to the measure name.
3. SUM is the aggregation function that is being applied to the column.
4. The FactInternetSales[Sales Amount] column in the FactInternetSales table

that is being aggregated.

Measures are created in the formula bar shown in Section 1 of Figure 2-20, and
they are kept in the Calculation pane, which is shown in Section 2. The value of
the measure with no filter context applied is shown in Section 3.

FIGURE 2-20 Creating a measure in the Data View

The parts of Figure 2-20 are:

1. The Formula bar with the DAX measure expression.
2. The Calculation Area where measures reside. In this screen capture, the

Total Sales Measures Home table is FactInternetSales.
3. The measure name, formula, and value with the current filter context, which

does not exist in this screen capture.

NOTE MEASURE NAME UNIQUENESS
A measure name must be unique across the entire collection of names used
for either calculated columns or measures. For example, if you attempt to
create a measure named CommuteDistance and CommuteDistance was a
column in DimCustomer, it will not be created. You will get an error message
stating that a measure or column with the name CommuteDistance already
exists and that you should choose a different name. Two columns can have
the same name if they reside in different tables.

Explicit Measures can be created in the data model using the Calculation Area
and from within Excel itself. From Excel, navigate to Power Pivot tab and the

Calculations group, then select, New Measure, or if you have the PivotTable
Fields pane open in Excel, you can right-click on any table and choose Add
Measure from the context menu. These options all create explicit measures that
are stored back in the data model. With that, let’s demonstrate the notion of
Explicit and Implicit measures.

1. Open the Excel workbook named \Chapter2\CH02Demo10start.xlsx and
navigate to the data model.

2. With the data model open, navigate to Home tab and choose PivotTable.
3. When prompted in the Create PivotTable dialog, choose Existing

Worksheet and choose a location within that worksheet.
4. In the PivotTable Fields, drag the following values to these locations:

Rows CurrencyName from DimCurrency.
Columns FiscalYear from DimDate.
Values TotalSales from FactInternetSales. Note that in the PivotTable
Fields pane, it will have a function symbol next to it.
Values Sales Amount from FactInternetSales.

5. You should end up with a PivotTable that looks like Figure 2-21.

FIGURE 2-21 PivotTable containing an Implicit and Explicit Measure

6. Notice that you have two values in the Values area and they both give the
same result. Total Sales is what is known as an Explicit measure, and Sum
of Sales Amount is known as an Implicit Measure. More to come on these at
the end of the example.

7. Now navigate back to the data model and select the Advanced tab and
choose Show Implicit Measures. With the FactInternetSales table
highlighted, scroll to find the Sales Amount column. Notice that a value has
been added to the Calculation Area under this column; the value also
appears if you hover over the blue double arrow icon as shown in Figure 2-
22. If you hover over the icon, the following message will be displayed:
"This measure was automatically generated by adding a field to the Values
area of the Fields list in Excel." This field is read-only and will
automatically be deleted if you delete the column.

FIGURE 2-22 Showing how an Implicit measure is shown in the Data
View of the data model

8. Save this workbook as \Chapter2\CH02Demo10end.xlsx because it will be
used as the starting point for the next example.

One of the best features of the data model is that Explicit measures are a part of
the data model and are reusable, which promotes code centralization and
consistency across your model. This is especially important as the complexity of
business rules and resulting DAX code increases. You can write it once and use it
many times. When you write DAX on your own to create a measure, it is known
as an Explicit measure.

An Implicit measure is only usable in the context of the PivotTable in which it
was created. Also, they are limited to the following standard aggregation (SUM,

COUNT, MIN, MAX, DISTINCTCOUNT, or AVGERAGE), and must use the
data format that is defined for that aggregation.

 EXAM TIP
Be prepared for a few questions that test your ability to recognize valid syntax.
These are a favorite type of question on any technical exam. With these types of
questions, it is best to go slow and eliminate wrong answers first, then inspect
the ones that look the most correct to find the one that is the right answer. Be
sure to spend some time learning how to quickly recognize valid and invalid
syntax. If you can get good at this technique, these questions become easy
points.

Data Types
Data types within the data model are strongly typed, and unlike Excel, all values in a column
will adhere to the same data type. Also, note that the variant data type which exists in Excel
does not exist as a data type in DAX (see Table 2-3).

TABLE 2-3 DAX Data Types

Data type in
Power Pivot
UI

Data
type in
DAX

Description

Whole
Number

A 64-bit
(eight-
bytes)
integer
value

Numbers that have no decimal
places. Integers can be positive or
negative numbers but must be whole
numbers between
-9,223,372,036,854,775,808 (-2^63)
and 9,223,372,036,854,775,807
(2^63-1).

Decimal
Number

A 64-bit
(eight-
bytes)
real
number

Real numbers are numbers that can
have decimal places. Real numbers
cover a wide range of values:

 Negative values from -1.79E +308
through -2.23E -308

 Zero
 Positive values from 2.23E -308

through 1.79E + 308
 However, the number of significant

digits is limited to 15 decimal digits.
TRUE/FALSE Boolean Either a True or False value.
Text String A Unicode character data string. Can

be strings, numbers, or dates
represented in a text format.

 Maximum string length is
268,435,456 Unicode characters (256
mega characters) or 536,870,912
bytes.

Date Date/time Dates and times in an accepted date-
time representation.

 Valid dates are all dates after January
1, 1900.

Currency Currency Currency data type allows values
between -922,337,203,685,477.5808
to 922,337,203,685,477.5807 with
four decimal digits of fixed precision.

N/A Blank A blank is a data type in DAX that
represents and replaces SQL nulls.
You can create a blank by using the
BLANK function and test for blanks
by using the logical function,
ISBLANK.

NOTE DAX DATA TYPES
The above table was copied from: https://msdn.microsoft.com/en-
us/library/gg413463(v=sql.110).aspx.

Operators
Table 2-4 lists the operators that are available in DAX.

TABLE 2-4 DAX Operators

Operator Type Symbol and Use
Parenthesis operator () precedence order and grouping of

arguments
Arithmetic operators + (addition)

 - (subtraction)
 * (multiplication)

 / (division)
 ^ (exponentiation)

Comparison operators = (equal to)
 > (greater than)

 < (less than)
 >= (greater than or equal to)

 <= (less than or equal to)
 <> (not equal to)

Text concatenation
operator

& (concatenation)

Logic operators && (and)
 || (or)

NOTE DAX OPERATORS
The above table was based off the function definitions from: https://msdn.microsoft.com/en-
us/library/ee634237.aspx.

Evaluations Contexts
Evaluation contexts are one of the most important concepts to understand when it comes to
building out DAX formulas for use within reporting solutions. To understand the end-results of
reports that are built up using DAX, time needs to be spent on building up your understanding
around this topic.

There are two evaluation contexts that are present when the evaluation of a DAX expression
occurs. These are the Row and Filter contexts.

The Row Context exists when you:

Create calculated columns.

https://msdn.microsoft.com/en-us/library/gg413463(v=sql.110).aspx
https://msdn.microsoft.com/en-us/library/ee634237.aspx

Iterate over a table row-by-row to calculate input values for aggregations.

In Figure 2-23, you can see that the result of the Calculated Column named Sales Amount as
FactInternetSales[OrderQuantity] * FactInternetSales[UnitPrice], which is calculated for each
row. Logically DAX is using the context of each row to determine the values for each input as it
goes row-by-row through the table and computes a value for Sales Amount. You will come back
to the second use of the Row context after Filter contexts are introduced.

FIGURE 2-23 Data Grid showing the row context

The Filter Context exists when you use measures in reporting solutions and the filters that
surround the measures are considered when calculating a value that will be displayed. You will
look at both via example. You will first use the Sales Amount Calculated Column as a base to a
Measure which you will put into a PivotTable.

1. With the\Chapter2\ CH02Demo10end.xlsx that you saved from the previous demo open,
remove all values in the PivotTable Field list except for the Total Sales measure. You
should end up with the result seen in Figure 2-24. The value of Total Sales is the sum of
Sales Amount across the entire data set. In other words, no filters have been applied.

FIGURE 2-24 PivotTable with nothing in the Filter Context

2. Drag the following fields into the PivotTable Fields list and observe the results, which are
shown in Figure 2-25. Move the following fields to the locations shown here:

Columns FiscalYear from DimDate
Rows CurrencyName from DimCurrency
Filters MaritalStatus from DimCustomer and set its value to S for single

FIGURE 2-25 PivotTable for explaining Filter Context

You will notice that there are three inputs into the Filter context that come from the values on
rows, columns, and filters. You can think of each cell in the PivotTable that has a numeric value

(from Total Sales) as having its value influenced by the three filters.
For example, the highlight value of 582460.013 (callout bubble 4) can be thought of as being

calculated like this:

1. The SUM of Sales Amount - The Measure
2. WHERE Currency Name = Australian Dollar - callout bubble 3
3. AND Fiscal Year = 2010 - callout bubble 2
4. AND Marital Status = S - callout bubble 1

The value of each cell is calculated independently using the logic above. To further illustrate,
here is how the value for callout bubble 6, which has a value of 1461056.723, has been
calculated:

1. The SUM of Sales Amount - The Measure
2. WHERE Currency Name = All Currencies - callout bubble 5
3. AND Fiscal Year = 2010 - callout bubble 2
4. AND Marital Status = S - callout bubble 1

Disregard the fact that you do not know whether you can really add up these dollar amounts
unless they have all been converted to a single currency such as USD. Assume that adding up
different currencies makes sense for this example.

Finally, in the section on iterators, you will look at the Row Context that is created when you
use Iterators to create measures.

Aggregate Functions
Aggregating data is far and away the most common operation in analytics. The most commonly
used Aggregate functions are SUM, AVERAGE, MIN, and MAX. They can operate on Dates or
Numeric. You have already seen the SUM aggregate function in action in the section on
measures. The SUM function sums up all the numbers in the column that is passed in. The
following examples can be found in the file named \Chapter2\CH02FunctionDemos.xlsx.

FIGURE 2-26 Results of the functions from Table 2-5

TABLE 2-5 Aggregate Functions

Function Description Example Data
Type of
input

SUM(column) Returns the
sums of the
column’s
values

SUM Order QTY :=
SUM(Aggregation[Order
QTY])

Numeric
or date

AVERAGE(column) Returns the
arithmetic
mean of the
column’s
values

AVERAGE Order QTY :=
AVERAGE(Aggregation[Order
QTY])

Numeric
or date

MIN(column) Returns
minimum
value of the
column’s
values

MIN Order QTY :=
MIN(Aggregation[Order
QTY])

Numeric
or date

MAX(column) Returns
maximum
value of the
column’s
values

MAX ORDER DATE :=
MAX(Aggregation[Order
Date])

Numeric
or date

MIN(expr1, expr2) Returns
minimum
value of the
column’s
values

MIN TWO EXPR := MIN(1,2) Numeric
or date

MAX(expr1, expr2) Returns
maximum
value of the
column’s
values

MAX TWO EXPR :=
MAX(-1, Blank())

Numeric
or date

NOTE DAX FUNCTION REFERENCE
All the function definitions in this section have been sourced from the Microsoft DAX
Function Reference which is located athttps://msdn.microsoft.com/en-
us/library/ee634396.aspx.

Counting Functions
Sometimes you want to perform counts on the rows in a table. There are several counting
functions that can be used. The following examples can be found in the file named

https://msdn.microsoft.com/en-us/library/ee634396.aspx

\Chapter2\CH02FunctionDemos.xlsx.

FIGURE 2-27 Results of the functions from Table 2-6

TABLE 2-6 Counting Functions

Function Description Example Data
Type of
input

COUNT(column) Counts the
number of
values in a
column

COUNT Order Date :=
COUNT(Aggregation[Order Date])

Column
that is
numeric,
text, or
date

COUNTA(column) Counts the
number of
values in a
column

COUNTA Order Date: =
COUNTA(Aggregation[Order Date])

Column
of any
type

COUNTBLANK(column) Counts the
number of
blank
values in a
column

COUNTBLANK Order Qty :=
COUNTBLANK(Aggregation[Order
QTY])

Column
of any
type

COUNTROWS(table) Counts the
number of
rows in a
table

COUNTROWS Aggregation :=
COUNTROWS(Aggregation)

Table

DISTINCTCOUNT(column) Counts the
number of
distinct
values in a
column

DISTINCTCOUNT Order Qty :=
DISTINCTCOUNT(Aggregation[Order
QTY])

Column
of any
type

Iterators
You may have noticed that you created a calculated column and then used that value inside a
Measure. This is all well and good, but what if you did not need that calculated column for
filtering or for use as values for rows or columns? It is highly likely that this is the case and, as

was mentioned when talking about optimization, you should avoid the situation where a
calculated column is created and is never used in the filter contexts described above.

For this, you can take advantage of iterators to create a Row Context and then calculate the
Measure value for which you are looking. As an example, the Total Sales Iterator function in
Table 2-7 iterates over each row FactInternetSales and multiplies the Order Quantity and Unit
Price for each Row Context and sums those values up over the entire table. This eliminates the
need for the calculated column named Sales Amount that was created earlier. The examples in
this section use the \Chapter2\Adventure Works Data Model.xlsx file.

TABLE 2-7 Iterator Functions

Function Description Example
SUMX(table,
expression)

Returns the
sum of an
expression
evaluated
for each
row in a
table.

Total Sales Iterator :=
SUMX(FactInternetSales,
FactInternetSales[OrderQuantity]
* FactInternetSales[UnitPrice])

AVERAGEX(table,
expression)

Calculates
the average
(arithmetic
mean) of a
set of
expressions
evaluated
over a table.

Average Sales Iterator :=
AVERAGEX(FactInternetSales,
FactInternetSales[OrderQuantity]
* FactInternetSales[UnitPrice])

MINX(table,
expression)

Returns the
smallest
numeric
value that
results from
evaluating
an
expression
for each
row of a
table.

Min Sales Iterator :=
MINX(FactInternetSales,
FactInternetSales[OrderQuantity]
* FactInternetSales[UnitPrice])

MAXX(table,
expression)

Evaluates
an
expression
for each
row of a
table and
returns the
largest
numeric
value.

Max Sales Iterator :=
MAXX(FactInternetSales,
FactInternetSales[OrderQuantity]
* FactInternetSales[UnitPrice])

Function Description Example

COUNTX(table,
expression)

Counts the
number of
rows that
contain a
number,
date, text,
or an
expression
that
evaluates to
a number
when
evaluating
an
expression
over a table

COUNTX Iterator :=
COUNTX(FactInternetSales,
FactInternetSales[OrderQuantity]
* FactInternetSales[UnitPrice])

Function Description Example

COUNTAX(table,
expression)

The
COUNTAX
function
counts
nonblank
results
when
evaluating
the result of
an
expression
over a table.
That is, it
works just
like the
COUNTA
function,
but is used
to iterate
through the
rows in a
table and
count rows
where the
specified
expressions
result in a
nonblank
result.

COUNTAX Iterator :=
COUNTAX(FactInternetSales,
FactInternetSales[OrderQuantity]
* FactInternetSales[UnitPrice])

MORE INFO EVALUATION CONTEXTS
For more information regarding evaluation context, see the sample chapter excerpt from
“The Definitive Guide to DAX, The: Business intelligence with Microsoft Excel, SQL
Server Analysis Services, and Power BI.” This book is a must-have reference for users of
DAX. https://www.microsoftpressstore.com/articles/article.aspx?p=2449191.

Logical Functions
Logical functions are used to build conditions in an expression. They are typically used to
create more complex DAX formulas. The following examples can be found in the file named
\Chapter2\CH02FunctionDemos.xlsx.

https://www.microsoftpressstore.com/articles/article.aspx?p=2449191

FIGURE 2-28 Results of the functions from Table 2-8

TABLE 2-8 Logical Functions

Function Description Example
TRUE() Returns the

value of
TRUE

Order Date gt Shipped Date =
IF(Aggregation[Order Date] >
Aggregation[Shipped Date], TRUE(),
FALSE())

FALSE() Returns the
value of
FALSE

Order Date gt Shipped Date =
IF(Aggregation[Order Date] >
Aggregation[Shipped Date], TRUE(),
FALSE())

AND(expr 1,
expr 2)

Returns
TRUE if
both
expressions
are TRUE,
otherwise it
returns
FALSE

Expensive Per Unit Price =
AND(Aggregation[Order QTY] < 3,
Aggregation[Sales Amount] >100)

OR(expr 1, expr
2)

Returns
TRUE if
one of the
expressions
is TRUE,
otherwise it
returns
FALSE

Valid Order =
IF(OR(ISBLANK(Aggregation[Order
QTY]), Aggregation[Order QTY] <
0), FALSE(), TRUE())

NOT(expr) Negates the
value of the
expression.
TRUE
returns
FALSE.
FALSE
returns
TRUE and
BLANK()
returns
TRUE

Invalid Order =
NOT(Aggregation[Valid Order])

Function Description Example

IF(logical test,
value if true,
value if false)

Evaluates a
logical test
and if the
result is
TRUE, then
argument 2
is returned
else
argument 3

See above examples

IFERROR(values
to test, return
value if error
exists)

Evaluates
argument 1
and if it
returns an
error then
argument 2
is returned

IFERROR(2 / BLANK(), 0) will
return 0
IFERROR(1/1, 0) will return 1

The SWITCH statement deserves greater explanation. A SWITCH statement is generally a
more elegant and clean way to write a complex IF statement. There are two types of SWITCH
statements; the first is known as a simple SWITCH, and the other is a searched SWITCH. The
simple SWITCH first evaluates an expression and then looks to find the first value that matches,
and then that matching result is returned. In DAX the searched SWITCH is mimicked by
making the expression of a simple SWITCH, a TRUE or FALSE. Then the flow will search
through all the values to find the first matching one. When using TRUE or FALSE, you can
build more complex expressions which make for a very powerful and easier to read statement
than an equivalent IF statement.

LISTING 2-1 DAX Switch Statement
Click here to view code image

--SIMPLE SWITCH
 Month Full Text =
 SWITCH (

 [Month Number],
 1, "January", 2, "February", 3, "March",

 4, "April", 5, "May", 6, "June",
 7, "July", 8, "August", 9, "September",

 10, "October", 11, "November", 12, "December"
 "Unknown month number"

)
 --SEARCHED SWITCH

 Color Name =
 SWITCH (

 TRUE (),
 [Color Code] = "r", "Red",

 Aggregation[Color Code] = "g", "Green",
 Aggregation[Color Code] = "b", "Blue",

 "Unknown"
)

MORE INFO LOGICAL FUNCTIONS
For more information and examples on the Logical Functions reference, see:
https://msdn.microsoft.com/en-us/library/ee634365.aspx.

Date and Time Functions
Data and Time functions are used to create calculations based on dates and time. They use the
datetime data type and depending on the function can take values from a column as an
argument.

The CALENDAR and CALENDARAUTO functions are used to return a table with a single
column of contiguous dates named Date. The range of dates is determined by the inputs to the
function. CALENDAR takes two parameters. The first is a start date and the second is the end
date. CALENDARAUTO uses the smallest and largest dates in the data model as a basis for
determining its start and end dates. It also takes on optional fiscal year-end parameter, which is
a value between 1 and 12 (see Table 2-9). The following examples can be found in the file
named \Chapter2\CH02FunctionDemos.xlsx.

FIGURE 2-29 Results of the functions from Table 2-9

TABLE 2-9 Date and Time Functions

Function Description Example
DATE(year,
month, day)

Returns a date
constructed from the
inputs of the
Datetime type

DATE Demo =
 DATE(DateFunctions[Year]

,DateFunctions[Month],
DateFunctions[Day])

TIME(hour,
minute,
second)

Returns a time
component
constructed from the
inputs of the
Datetime type

TIME Demo =
 TIME(DateFunctions[Hour],

DateFunctions[Minute],
DateFunctions[Second])

NOW() Returns current date
and time

NOW Demo = NOW()

TODAY() Returns date with no
time component
(defaults to 12AM)

TODAY Demo = TODAY()

FIGURE 2-30 Results of the functions from Table 2-10

https://msdn.microsoft.com/en-us/library/ee634365.aspx

TABLE 2-10 Date and Time Functions

Function Description Example
DATEDIFF(start
date, end date,
interval)

Returns a
number that
corresponds
to the
interval you
wish to
measure
between a
start- and
end-date
datetime
value. The
interval can
be Years,
Quarters,
Months,
Weeks,
Days,
Hours,
Minutes, or
Seconds.

DATEDIFF Demo =
DATEDIFF(DateFunctions2[Start
Date], DateFunctions2[End Date],
DAY)

EDATE(date
value, months
value)

Returns a
date that is
indicated by
the number
of months
before or
after the
date value.

EDATE Demo =
EDATE(DateFunctions2[Start
Date], 1)

EOMONTH(date
value, months
value)

Returns a
date at the
end of the
month that
is indicated
by the
number of
months
before or
after the
date value.

EOMONTH Demo =
=EOMONTH(DateFunctions2[Start
Date], 0)

There are several functions that parse out a specified part of a datetime. Each of these
functions takes a datetime value and returns an integer. The functions are YEAR, MONTH,

DAY, HOUR, MINUTE, SECOND, WEEKDAY, and WEEKNUM.
And finally, there are two functions that take a text representation of a date or time and

converts it to datetime data type. These are DATEVALUE and TIMEVALUE.

MORE INFO DATE AND TIME FUNCTIONS
For more information and examples on the Date and Time Functions reference, see:
https://msdn.microsoft.com/en-us/library/ee634786.aspx.

Text Functions
With the text functions in DAX, you can do such things as return parts of a string, look for text
within a string, or concatenate string values. The following examples can be found in the file
named \Chapter2\CH02FunctionDemos.xlsx.

FIGURE 2-31 Results of the functions from Table 2-11

https://msdn.microsoft.com/en-us/library/ee634786.aspx

TABLE 2-11 Text Functions

Function Description Example
CONCATENATE(
value1, value 2)

Returns a
number that
corresponds
to the
interval you
wish to
measure
between a
start- and
end-date
datetime
value. The
interval can
be Years,
Quarters,
Months,
Weeks,
Days,
Hours,
Minutes, or
Seconds.

CONCATENATE Demo =
CONCATENATE(TextFunctions[First
Name], TextFunctions[Last Name])

CONCATENATEX(
table, expression,
delimiter)

Returns a
date that is
the
indicated by
the number
of months
before or
after the
date value.

CONCATENATEX Demo :=
CONCATENATEX(TextFunctions,
[First Name], “, “)

FIGURE 2-32 Results of the functions from Table 2-12

TABLE 2-12 Text Functions

Function Description Example
FIND(text to find, text
to search, [Start
Position], [Value if not
found])

Returns the
numeric
position of
the first
occurrence
of the text
to find in
the text to
search from
left to right.
Search is
case-
sensitive.

FIND Demo = FIND(“m”,
TextFunctions[First Name], 1,
BLANK())

SEARCH(text to find,
text to search, [Start
Position], [Value if not
found])

Returns the
numeric
position of
the first
occurrence
of the text
to find in
the text to
search from
left to right.
Search is
case-
insensitive.

SEARCH Demo = FIND(“M”,
TextFunctions[First Name], 1,
BLANK())

REPLACE(original
text, start position,
length, replacement
text)

Returns a
newly
formed
string with
the replaced
text.

REPLACE DEMO =
REPLACE(TextFunctions[First
Name], 1, 2, “Mr.”)

SUBSTITUTE(original
text, text to replace,
replacement text,
instance occurrence to
replace)

Returns a
newly
formed
string with
the replaced
text.

SUBSTITUTE Demo=
SUBSTITUTE(TextFunctions[First
Name], “-”, “ “,1)

Function Description Example

EXACT(value 1, value
2)

Compares
two text
strings and
returns
TRUE if
they are the
same,
including
case.

EXACT Demo =
EXACT(TextFunctions[First
Name], “Adam”)

VALUE(text value) Converts
the text
value to a
number

VALUE Demo = VALUE(“1”)

FIGURE 2-33 Results of the functions from Table 2-13

TABLE 2-13 Text Functions

Function Description Example
LEN(value to
measure)

Returns the
length of the
string.

=LEN(TextFunctions[First
Name])

TRIM(value to
trim)

Returns a string
with leading and
trailing
whitespace
removed.

=TRIM(TextFunctions[First
Name])

LEFT(value,
number of
characters to
take)

Returns the left
number of

 characters
specified.

=LEFT(TextFunctions[First
Name], 5)

RIGHT(value,
number of
characters to
take)

Returns the right
number of
characters
specified.

=RIGHT(TextFunctions[First
Name], 3)

MID(value,
start positions,
number of
characters to
take)

Returns the
characters from
the starting
position for the
number of
characters
specified.

=MID(TextFunctions[First
Name], 2,2)

MORE INFO TEXT FUNCTIONS
For more information and examples on the Text Functions reference, see:
https://msdn.microsoft.com/en-us/library/ee634938.aspx.

Information Functions
These functions look at the table or column that is passed in as an argument to and tells you
whether the value matches the expected type. The examples in this section use the
\Chapter2\Adventure Works Data Model.xlsx file.

https://msdn.microsoft.com/en-us/library/ee634938.aspx

TABLE 2-14 Information Functions

Function Description Example
CONTAINS(table,
columnName,
value[,
columnName,
value]…)

Returns true
if the table
that is
passed in
contains the
values
listed.

Contains Name :=
CONTAINS(DimCustomer,
[LastName], “Suarez”)
* This was created as a
measure in FactInternetSales

LOOKUPVALUE(
result
columnName,
search
columnName,
search value[,
search
columnName>,
search value…)

Returns the
result
column
name to the
originating
table where
the value of
the search
column
name
matches the
search value
from the
originating
table.

=LOOKUPVALUE
(DimCustomer[FirstName],
DimCustomer[CustomerKey],
[CustomerKey])
* This was created as a
calculated column named
Customer First Name in
FactInternetSales

Other Information Functions

ISBLANK
ISERROR
ISEVEN
ISLOGICAL
ISNONTEXT
ISNUMBER
ISONORAFTER
ISTEXT

MORE INFO INFORMATION FUNCTIONS
For more information and examples on the Information Functions reference, see:
https://msdn.microsoft.com/en-us/library/ee634552.aspx.

Filter Functions
The following group of functions is primarily used in the process of filtering data. You will look
at CALCULATE, FILTER, ALL, and USERELATIONSHIP functions, which are some of the

https://msdn.microsoft.com/en-us/library/ee634552.aspx

most commonly used filtering functions.
The CALCULATE function is likely the most widely used function in DAX. It is used to

modify the context in which your data is filtered, and it evaluates an expression in the context
that you specify by using filters. In Listing 2-2, you are calculating the Total Sales by using the
overriding the context to be the United States only.

LISTING 2-2 CALCULATE Function
Click here to view code image

//
 US Sales :=

 CALCULATE (
 [Total Sales],

 DimSalesTerritory[SalesTerritoryCountry] = "United States"
)

Figure 2-34 shows the U.S. sales measure as using the Total Sales measure and then
modifying the Filter Context the Year and Country on the columns and rows. The U.S. Filter in
Calculate overrides the Country Filter context on the rows and accepts the Year filter on the
columns to produce the PivotTable values. To verify, you will notice that the values with a Row
Table of Total Sales and U.S. sales both report the same values.

FIGURE 2-34 PivotTable showing the US Sales and the Total Sales Measures side by side

The FILTER Function is used to restrict the rows in the table that you are working with, and
it is used in conjunction with other functions that require a table as an argument. In Listing 2-3,
you FILTER the Product Table to products that have a list price of greater than $10. This
measure is influenced by the context that surrounds it.

The second measure named Products over 10 ALL in Listing 2-3 uses the ALL function to
remove the context that might be influencing what values are seen in Dim Product. This
explains why the value of 380 repeats for each row as the Grand Total amount is not influenced
by the filtering context.

Also, notice that a (blank) is inserted as the last product category, and this is due to the fact
you are using the EnglishProductCategoryName from the DimProductCategory. In this data
structure, there are Products that have no Subcategories and hence no Categories, so a blank is
inserted into the result set.

LISTING 2-3 The FILTER Function
Click here to view code image

//
 Products over 10 :=

 COUNTROWS (FILTER (DimProduct, DimProduct[ListPrice] > 10))
 //

 Products over 10 ALL :=
 COUNTROWS (FILTER (ALL (DimProduct), DimProduct[ListPrice] > 10))

FIGURE 2-35 Pivot to show measures side by side within filter context

As mentioned earlier in the Chapter when establishing relationships, you were made of aware
of the fact that you can have multiple relationships between two tables, but only one of them
can be active at a time. To take advantage of the inactive paths, you need to use the
USEREALTIONSHIP function.

In the Adventure Works Data Model.xlsx, the DimDate table has three relationships between
it and FactInternetSales. They are:

OrderDateKey to DateKey: Active
ShippedDateKey to DateKey: Inactive
DueDateKey to DateKey: Inactive

The first measure in Listing 2-4 counts the number of order in FactInternetSales. The second
measure Counts the number Orders Shipped using the inactive path. Figure 2-36 shows the
result of comparing these values in a PivotTable.

LISTING 2-4 The USERELATIONSHIP Function
Click here to view code image

//COUNT OF THE NUMBER OF ORDERS
 Count of Orders :=

 COUNTROWS (FactInternetSales)

//COUNT OF ORDERS SHIPPED. THIS USES THE INACTIVE SHIPPED DATE RELATIONSHIP
 COUNT OF ORDERS SHIPPED :=

 CALCULATE (
 [COUNT OF ORDERS],

 USERELATIONSHIP (DIMDATE[DATEKEY], FACTINTERNETSALES[SHIPDATEKEY])
)

FIGURE 2-36 Pivot showing a calculation using an inactive relationship

Additional Filter Functions:

ADDMISSINGITEMS
ALLEXCEPT
ALLNOBLANKROW

https://msdn.microsoft.com/en-us/library/dn802537.aspx
https://msdn.microsoft.com/en-us/library/ee634795.aspx
https://msdn.microsoft.com/en-us/library/ee634793.aspx

ALLSELECTED
CALCULATETABLE
CROSSFILTER
DISTINCT
EARLIER
EARLIEST
FILTERS
HASONEFILTER
HASONEVALUE
ISCROSSFILTERED
ISFILTERED
KEEPFILTERS
RELATEDTABLE
SELECTEDVALUE

MORE INFO FILTER FUNCTIONS
For more information and examples on the Filter Functions reference, see:
https://msdn.microsoft.com/en-us/library/ee634807.aspx.

Time Intelligence Functions
Time Intelligence functions are used to create references to data across time periods. They use
built-in intelligence that relies on calendars and dates. When used in combination with
aggregations or calculations, you can build sophisticated comparison across time periods. For
many of these functions to work properly, it is important that you have a table marked as a Data
Table in the model. Some of the more commonly used data functions are shown in the next two
listings.

The TOTALMTD, TOTALQTD, and TOTALYTD functions calculate running totals for the
time from referenced below. The TOTALYTD function in Listing 2-5.

LISTING 2-5 The TOTALYTD Function
Click here to view code image

//
 Total Sales YTD:=TOTALYTD (

 SUM (FactInternetSales[Sales Amount]),
 DimDate[FullDateAlternateKey]

)

The SAMEPERIODLASTYEAR function returns a set of dates from the previous year so
that you can calculate the previous year amounts for comparative purposes.

LISTING 2-6 The SAMEPERIODLASTYEAR Function
Click here to view code image

https://msdn.microsoft.com/en-us/library/gg492186.aspx
https://msdn.microsoft.com/en-us/library/ee634760.aspx
https://msdn.microsoft.com/en-us/library/mt631192.aspx
https://msdn.microsoft.com/en-us/library/ee634943.aspx
https://msdn.microsoft.com/en-us/library/ee634551.aspx
https://msdn.microsoft.com/en-us/library/ee634779.aspx
https://msdn.microsoft.com/en-us/library/gg492172.aspx
https://msdn.microsoft.com/en-us/library/gg492135.aspx
https://msdn.microsoft.com/en-us/library/gg492190.aspx
https://msdn.microsoft.com/en-us/library/gg492197.aspx
https://msdn.microsoft.com/en-us/library/gg492163.aspx
https://msdn.microsoft.com/en-us/library/hh758426.aspx
https://msdn.microsoft.com/en-us/library/ee634226.aspx
https://msdn.microsoft.com/en-us/library/mt842608.aspx
https://msdn.microsoft.com/en-us/library/ee634807.aspx

//
 Total Sales PY:=CALCULATE (

 SUM (FactInternetSales[Sales Amount]),
 SAMEPERIODLASTYEAR (DimDate[FullDateAlternateKey])

)

To see the behavior of the TOTALYTD and SAMEPERIODLASTYEAR, you can open the
Adventure Works Data Model.xlsx spreadsheet and go to the TimeIntelligence tab to see the
PivotTable behind Figure 2-37.

The Total Sales Column uses the Total Sales measure from earlier. Notice that it keeps track
of totals by each month and then the year. The Total Sales YTD keeps a running Total Sales
measure over the time frame. And finally, observe how the Total Sales PY repeats the Total
Sales measures for the previous year.

The Time Intelligence Functions are very powerful and make doing periodic analysis possible
in only a few lines of code.

FIGURE 2-37 Pivot showing Time Intelligence Function results

MORE INFO TIME INTELLIGENCE FUNCTIONS
For more information and examples on the Time Intelligence Functions reference, see the
following two articles: https://msdn.microsoft.com/en-us/library/ee634763.aspx and
https://support.office.com/en-us/article/time-intelligence-in-power-pivot-in-Excel-016acf7b-
9ded-411e-ba6c-ed8b8c368011.

https://msdn.microsoft.com/en-us/library/ee634763.aspx
https://support.office.com/en-us/article/time-intelligence-in-power-pivot-in-Excel-016acf7b-9ded-411e-ba6c-ed8b8c368011

Statistical, Math, and Trig Functions
Statistical, Math, and Trig Functions are used to provide various operations when working with
numeric data. The following examples in Listing 2-7 and can be found in the file named
\Chapter2\CH02FunctionDemos.xlsx. The outputs of these functions are shown in Figure 2-
38.

LISTING 2-7 The Statistical, Math, and Trig Function
Click here to view code image

=ABS(Numbers[Numbers])
 =CEILING(Numbers[Numbers], 1)

 =FLOOR(Numbers[Numbers], 1)
 =ROUND(Numbers[Numbers], 2)
 =ROUNDUP(Numbers[Numbers], 2)
 =ROUNDDOWN([Numbers], 2)

 =TRUNC(Numbers[Numbers], 1)
 =EVEN(Numbers[Numbers])

 =ODD(Numbers[Numbers])

FIGURE 2-38 Results of the functions from Listing 2-7

MORE INFO STATISTICAL, MATH, AND TRIG FUNCTIONS
For more information and examples on the Math and Trig Functions reference, see:
https://msdn.microsoft.com/en-us/library/ee634241.aspx. For more information and
examples on the Statistical Functions reference, see: https://msdn.microsoft.com/en-
us/library/ee634822.aspx.

Parent and Child Functions
There are several Parent and Child Functions that are presented here that are used to flatten

out and work with hierarchy data. They will be discussed in detail in Skill 2.3 when you learn
about resolving hierarchy issues. They are listed here for completeness:

PATH
PATHCONTAINS
PATHITEM
PATHITEMREVERSE
PATHLENGTH

MORE INFO PARENT AND CHILD FUNCTIONS
For more information and examples of the Parent and Child Functions reference, see:
https://msdn.microsoft.com/en-us/library/mt150102.aspx.

https://msdn.microsoft.com/en-us/library/ee634241.aspx
https://msdn.microsoft.com/en-us/library/ee634822.aspx
https://msdn.microsoft.com/en-us/library/mt150102.aspx

Other Functions
The following functions perform actions that do not fit into any of the above categories of
functions as previously discussed:

EXCEPT
GROUPBY
INTERSECT
UNION
NATURALINNERJOIN
NATURALLEFTOUTERJOIN
ISEMPTY
SUMMARIZECOLUMNS
VAR

MORE INFO ADDITIONAL DAX RESOURCES
This section of the book is meant as an overview of the functions that are available in the
DAX to prepare you for the exam. For a more in-depth dive into DAX, any of these three
groups are considered gurus in the space and all have books that should be on your
bookshelf. Marco Russo and Alberto Ferrari of https://www.sqlbi.com/; Rob Collie of
https://PowerPivotpro.com/; and Matt Allington of https://Exceleratorbi.com.au/.

Create DAX queries
The exam will test your ability to write basic DAX queries. DAX queries are very useful for
helping you retrieve data from Analysis Services Tabular Models into your data models. You
have already seen a few places in this book in which you have imported data from these
sources, but have gone directly to tables themselves to retrieve them in their entirety. Now you
will see how to write your own queries so that you can build more custom solutions for
retrieving data based on unique needs.

NOTE ADVENTUREWORKS TABULAR SAMPLE DATABASE
The examples in this section require you to have the same AdventureWorks tabular models
installed that you needed in Chapter 1. If you did not install these at that point but want to
use them now, please refer to the instructions at the beginning of Chapter 1, Skill 1.1.

DAX query structure
The structure of a DAX query is straightforward but does differ from what you may have seen
in T-SQL or MDX. The examples walk through the progressions of building a more complex
DAX query in a manner like how one would learn when building T-SQL statements. Listing 2-8
contain the most basic form of DAX query; it simply retrieves all the columns and rows of data
from the table.

https://www.sqlbi.com/
https://powerpivotpro.com/
https://exceleratorbi.com.au/

If the table name contains any spaces or reserved words, it would need to be surrounded by
quotes. If not, the quotes are not necessary. The statements in the EVALUATE could also be
surrounded by brackets.

LISTING 2-8 DAX Query
Click here to view code image

EVALUATE
 'Internet Sales'

--OR the following is valid as well

EVALUATE (

 'Internet Sales'
)

To run the first queries in this section, you will use the Get External Data functions from
within Power Pivot. This is initially the most convenient way to write initial DAX queries, and
it allows you to easily go back and modify them. You will be connecting into an Analysis
Services Tabular Model for this, but you could also connect to a Power Pivot Workbooks so
long as it resides in SharePoint.

Additionally, as you move through the Table Import Wizard, you will notice that the last
screen asks you to write an MDX statement. In this case, a DAX query is what you will use
since you are connecting to a Tabular Model. In this example, you use EVALUATE to execute
your first DAX query.

1. Create a new Excel workbook and then from the Power Pivot window navigate to Home,
From Database, From Analysis Services Or PowerPivot.

2. In the Table Import Wizard–Connect to a Microsoft SQL Server Analysis Service
Database screen, configure the following and when complete click Next.

Friendly Connection Name Adventure Works Internet Sales Model Connection
Log Onto The Server Windows Authentication
Server Or File Name Your Server Name
Database Name Adventure Works Internet Sales

3. In the Table Import Wizard–Specify An MDX query window, configure the following
and then click Finish.

Friendly Query Name Type Internet Sales. This will translate to the name of the
table in the data model, so choosing an appropriate name at this point is wise.
MDX Statement Use one of the two blocks of code in Listing 2-8.

4. You should now see one table in your data model named Internet Sales, which is a one for
one copy of the Internet Sales Table in the Adventure Works Internet Sales database. Save
your work as \Chapter2\CH02DAXQueries.xlsx and leave Excel open because the
following examples will continue to build in the same location.
Next, you will look a syntax around ordering your data set should you want to override the
default sorting. The ORDER BY clause is an optional clause that contains an expression
you would like to sort your result set on, and it is listed in order of precedence or how you

want the sort to occur. Any expression that can be evaluated at the Row level is valid. The
default sort order is ascending, or if you wish to be explicit, you can specify ASC. To sort a
column in descending order, use DESC.
Another optional clause that can be used with ORDER BY is START AT. The START AT
clause is part of the ORDER BY clause and cannot be used outside of it. It defines the
values at which the query results will start. In this example, you use the ORDER BY and
START AT clauses.

5. Open the workbook that you previously saved as \Chapter2\CH02DAXQueries.xlsx.
6. With Power Pivot open, select Design > Table Properties. This will open the Edit Table

Properties dialog, which has the DAX query for the Internet Sales table.
7. In the MDX statement text box, type the syntax from Listing 2-9. Click Save when

complete and this will order the Internet Sales table by the Sales Order number in
ascending order. Note that the ASC keyword is optional and only there for clarity.

LISTING 2-9 DAX with ORDER BY
Click here to view code image

EVALUATE (
 'Internet Sales'

)
 ORDER BY

 'Internet Sales'[Sales Order Number] ASC

8. Next, you will modify the above statement so that the sorting starts at a certain point in the
data set using START AT. Open the Table Properties again and modify the query to
match Listing 2-10. Once complete, click Save.

LISTING 2-10 DAX with ORDER BY and START AT
Click here to view code image

EVALUATE (
 'Internet Sales'

)
 ORDER BY

 'Internet Sales'[Sales Order Number] ASC
 START AT

 "SO75122"

9. You will now notice that as in Figure 2-39, only five rows are in the Internet Sales table
since the START AT clause has a value near the end of the data set.

10. Save the \Chapter2\CH02DAXQueries.xlsx Excel workbook.

FIGURE 2-39 Results of the functions from Listing 2-10

Now you will look at the SUMMARIZE function as used in a couple of different scenarios.
As you may have noticed, DAX has no simple way to perform projection, which means only
choosing certain columns from a table. The previous examples using EVALUATE simply chose

all the columns in the table. This is unlike a SQL select clause where you only add items in the
select list that you want to be displayed in your result set. To facilitate this in DAX, you will use
the SUMMARIZE function. The first demo will mimic only selecting columns with no intent on
performing aggregations. The second will use SUMMARIZE in a more traditional way in
which it is used to aggregate data.

In this example, you use the SUMMARIZE for column projection. This example works as it
takes advantage of the uniqueness of Sales Order Number and Sales Order Line Number. It
effectively functions by aggregating individual rows, which is just like returning the underlying
detail’s rows.

1. Open the workbook that you previously saved as \Chapter2\CH02DAXQueries.xlsx.
2. With Power Pivot open, choose Design, Table Properties. This will open the Edit Table

Properties dialog, which has the DAX query for the Internet Sales table.
3. In the MDX statement text box, type the syntax from Listing 2-11. This will summarize

the Internet Sales table and will only return the columns listed.

LISTING 2-11 DAX SUMMARIZE function
Click here to view code image

EVALUATE
 SUMMARIZE (

 'Internet Sales',
 'Internet Sales'[Sales Order Number],

 'Internet Sales'[Sales Order Line Number],
 'Internet Sales'[Total Product Cost]

)

4. Once you are done, click Save and then look at the Internet Sales table to verify that it has
been built according to your criteria as shown in Figure 2-40.

FIGURE 2-40 Results of the functions from Listing 2-11

MORE INFO TECHNIQUES FOR PROJECTION IN DAX
If you are interested in other means for performing projection, see the article from SQLBI:
https://www.sqlbi.com/articles/from-sql-to-dax-projection.

In this example, you will perform a more traditional aggregation using SUMMARIZE for
aggregation and FORMAT to style values. Here you will aggregate Total Product Cost and

https://www.sqlbi.com/articles/from-sql-to-dax-projection

Order Quantity from the Internet Sales table, and you will group them by Calendar Year and
Product Category Name from their respective dimension tables. Take note that in this demo,
you are aggregating columns as opposed to using the Measures that have been created in the
model. In the next demo, you use the Measures to take note to compare the differences.

Also, you will notice the use of the FORMAT function, which has the following syntax:
FORMAT(<value>, <format_string>).

MORE INFO FORMAT
The FORMAT function is a straightforward function implement, and it has quite a bit of
flexibility. For more information on how to use the FORMAT function, please refer to the
article at https://msdn.microsoft.com/en-us/library/ee634924.aspx.

1. Open the workbook that you previously saved as \Chapter2\CH02DAXQueries.xlsx.
2. With Power Pivot open, choose Design > Table Properties. This will open the Edit Table

Properties dialog, which has the DAX query for the Internet Sales table.
3. In the MDX statement text box, type in the syntax from Listing 2-12. This will

summarize the Internet Sales table and will only return the columns listed. Notice that you
also ordered the table in the same way it was returned, as can be seen in Figure 2-41. Also,
Sales Amount has been formatted according to the provided format mask, and it has been
stored as a Text Data Type.

LISTING 2-12 DAX SUMMARIZE Function performing aggregation
Click here to view code image

EVALUATE
 SUMMARIZE (

 'Internet Sales',
 'Date'[Calendar Year],

 'Product Category'[Product Category Name],
 "Sales Amount", FORMAT(SUM('Internet Sales'[Sales Amount]), "#,##0.00#"),

 "Order Quantity", SUM('Internet Sales'[Order Quantity])
)

 ORDER BY
 'Date'[Calendar Year],

 'Product Category'[Product Category Name]

4. Once you are done, click Save and then look at the Internet Sales table to verify that it has
been built according to your criteria.

FIGURE 2-41 Results of the functions from Listing 2-12

https://msdn.microsoft.com/en-us/library/ee634924.aspx

What if you now want to include subtotals for each of the above groupings? This is where
you can take advantage of the ROLLUP function. For an example of how this works, see
Listing 2-13. After you execute the query in Power Pivot, you should see the results as in
Figure 2-42.

LISTING 2-13 DAX SUMMARIZE with the ROLLUP option
Click here to view code image

EVALUATE
 SUMMARIZE(

 'Internet Sales',
 ROLLUP (

 'Date'[Calendar Year],
 'Product Category'[Product Category Name]

),
 "Total Sales",

 [Internet Total Sales],
 "Order Quantity",

 [Internet Total Units]
)

 ORDER BY
 'Date'[Calendar Year],

 'Product Category'[Product Category Name]

FIGURE 2-42 Results of the functions from Listing 2-13

MORE INFO INTRODUCTION TO SUMMARIZECOLUMNS
SUMMARIZECOLUMNS columns have recently been introduced to the DAX
language; for an introduction to this, see the article on SQLBI at
https://www.sqlbi.com/articles/introducing-summarizecolumns/. For the function
specification, see https://msdn.microsoft.com/en-us/library/mt163696.aspx.

A useful feature when writing DAX queries is to be able to create measures that only last
the duration of the actual query. You might use this when debugging or trying to
understand a model that someone has already created that you are consuming in your data
model. Or perhaps you are experimenting with a measure that you are not sure you want
someone to add to a tabular model yet. The example focuses on using Query Scoped
Measures.

5. Open the workbook that you previously saved as \Chapter2\CH02DAXQueries.xlsx.

https://www.sqlbi.com/articles/introducing-summarizecolumns/
https://msdn.microsoft.com/en-us/library/mt163696.aspx

6. With Power Pivot open, choose Design > Table Properties. This will open the Edit Table
Properties dialog, which has the DAX query for the Internet Sales table.

7. In the window, type in the syntax from Listing 2-14. This will take the Internet Sales and
will only return the columns listed. Notice that the table has been ordered in the same way
it was returned.

LISTING 2-14 Query Scoped Measure
Click here to view code image

DEFINE
 MEASURE 'Internet Sales'[Total Sales] =

 SUM ('Internet Sales'[Sales Amount])
 EVALUATE

 SUMMARIZE (
 'Internet Sales',

 'Product'[Color],
 "Total Sales",

 'Internet Sales'[Total Sales]
)

 ORDER BY 'Product'[Color]

CALCULATE is the same function that you looked at in the DAX Functions Section. It
simply evaluates an expression in a context that is modified by a filter specified in the function.
In Listing 2-15, you modify the current context by removing all filters by applying the ALL
Function so that all the denominator for Sales Proportion can be calculated properly.

LISTING 2-15 CALCULATE and ALL Functions
Click here to view code image

DEFINE
 MEASURE 'Internet Sales'[Sales by Color] =

 SUM ('Internet Sales'[Sales Amount])
 MEASURE 'Internet Sales'[All Sales] =

 CALCULATE (SUM ('Internet Sales'[Sales Amount]), ALL ('Internet Sales')
)
 MEASURE 'Internet Sales'[Sales Proportion] =

 DIVIDE('Internet Sales'[Sales by Color], 'Internet Sales'[All Sales], 0)
 EVALUATE

 SUMMARIZE (
 'Internet Sales',

 'Product'[Color],
 "Total Sales by Color", 'Internet Sales'[Sales by Color],

 "Total Sales overall", 'Internet Sales'[All Sales],
 "Proportion", 'Internet Sales'[Sales Proportion]

)
 ORDER BY 'Product'[Color]

It is also possible to apply the FILTER function similarly to what was done in the Section on
creating DAX formulas. In Listing 2-16 you first filter the Internet Sales table to the products
that are red. This then produces a table that is then fed into the SUMMARIZE function. Also,
notice that you needed to take advantage of the RELATED function to enable the filtering to
succeed.

LISTING 2-16 FILTER Function

Click here to view code image

DEFINE
 MEASURE 'Internet Sales'[Total Sales] =

 SUM ('Internet Sales'[Sales Amount])
 EVALUATE

 SUMMARIZE (
 FILTER('Internet Sales', RELATED('Product'[Color]) = "Red"),

 'Product'[Color],
 "Total Sales",

 'Internet Sales'[Total Sales]
)

 ORDER BY 'Product'[Color]

At this point, you have kept the FILTER criteria straightforward. It is possible to use Logic
Functions to build up more complex filtering criteria. In Listing 2-17, you do so by layering in
an OR statement so that you can bring in both red and blue products.

LISTING 2-17 FILTER with OR Logic
Click here to view code image

DEFINE
 MEASURE 'Internet Sales'[Total Sales] =

 SUM ('Internet Sales'[Sales Amount])
 EVALUATE

 SUMMARIZE (
 FILTER (
 'Internet Sales',

 OR (
 RELATED ('Product'[Color]) = "Red",

 RELATED ('Product'[Color]) = "Blue"
)

),
 'Product'[Color],

 "Total Sales", 'Internet Sales'[Total Sales]
)

 ORDER BY 'Product'[Color]

If you have written SQL statements in the past, you will be familiar with the HAVING clause,
which is used to filter data out of your result set after aggregations have occurred. DAX allows
you to perform the functional equivalent by filtering your SUMMARIZE using a Measure
value. Notice that filtering of the rows that go into the SUMMARIZE is done using the FILTER
clause. This happens before you aggregate your data into a Measure. Once your query has the
rows that are needed for aggregations, the aggregation can be performed. Once this step is done,
you can filter on the Measure.

LISTING 2-18 FILTER with by Measure
Click here to view code image

DEFINE
 MEASURE 'Internet Sales'[Total Sales] =

 SUM ('Internet Sales'[Sales Amount])
 EVALUATE

 FILTER(
 SUMMARIZE (

 'Internet Sales',
 'Product'[Color],
 "Total Sales", 'Internet Sales'[Total Sales]

), [Total Sales] > 2500000
)

 ORDER BY 'Product'[Color]

MORE INFO CREATING A DAX QUERY IN EXCEL
For more information on how to create a DAX query in Excel using another method,
consult the following article: https://www.sqlbi.com/articles/import-data-from-tabular-
model-in-Excel-using-a-dax-query/.

Create Excel formulas
Consuming data via PivotTables is a common and robust way for users to interact with data in
the Excel data model and well as cubes in SQL Server Analysis services. More will be said
about using PivotTables to navigate to the data model in Chapter 3, but as you may already
know, they offer second-to-none flexibility for slicing and dicing information. However, this
flexibility comes at a cost and has some limitations when results need to be displayed in certain
ways.

The following are scenarios where the presentation to end-users begins to fall short when
using PivotTables to display metrics in a manner as shown in Figure 2-43. If you wish to look at
the finished product and its supporting objects, please refer to
\Chapter2\CH02CubeFunctionsEnd.xlsx.

1. If a user wanted to build a dashboard for consumers that would remain static in shape and
size, a PivotTable will fall short. PivotTables are dynamic by nature, and the simple nature
of resizing makes consuming data from them a challenge, and additional members would
affect the cell references needed to build reports and dashboards.

2. There are native Excel formatting options that are available when data is formatted in the
manner below that are not easily replicated, or even possible, when using a PivotTable
alone. The columns that are conditionally formatted and the Growth columns are not
possible with a PivotTable alone.

FIGURE 2-43 Dashboard supported by CUBE Functions and native Excel formatting

Seven Cube Functions were introduced in Excel 2007 and were used to interact with SQL
Server Analysis Services sources. This was extended to include the ability for the functions to

https://www.sqlbi.com/articles/import-data-from-tabular-model-in-Excel-using-a-dax-query/

interact with not only Analysis Services but the Excel data model as well. As you will see, these
functions can be used to help us get around some of the shortcomings that were listed above.
The seven cube functions are listed in Table 2-15, and further information can be found in the
more information section below.

TABLE 2-15 The Seven Cube Functions available in Excel

Cube Function Name Description
CUBEMEMBER function Returns a member or tuple from

the cube. Use to validate that the
member or tuple exists in the
cube.

CUBEVALUE function Returns an aggregated value from
the cube.

CUBEMEMBERPROPERTY
function

Returns the value of a member
property from the cube. Use to
validate that a member name
exists within the cube and to
return the specified property for
this member.

CUBESET function Defines a calculated set of
members or tuples by sending a
set expression to the cube on the
server, which creates the set and
then returns that set to Microsoft
Excel.

CUBESETCOUNT function Returns the number of items in a
set.

CUBERANKEDMEMBER
function

Returns the nth, or ranked,
member in a set. Use to return
one or more elements in a set,
such as the top sales performer or
the top 10 students.

CUBEKPIMEMBER
function

Returns a key performance
indicator (KPI) property and
displays the KPI name in the cell.
A KPI is a quantifiable
measurement, such as monthly
gross profit or quarterly
employee turnover, that is used to
monitor an organization’s
performance.

MORE INFORMATION CUBE FUNCTION SPECIFICATIONS

The following link contains more information regarding the implementation specifications
of the cube functions. Table 2-15 has been sourced from this site:
https://support.office.com/en-us/article/Cube-functions-reference-2378132B-D3F2-4AF1-
896D-48A9EE840EB2.

Cube functions can be written as a query, cell by cell, against an MDX or Tabular source.
Optionally, as a starting point, a PivotTable can be converted entirely to Cube Functions all in
one action, as will demonstrated next. The most basic way to start using Cube Functions is to
first create a PivotTable and then convert it in one step. In this example, we build a dashboard
using data sourced from Cube Functions.

1. Open the file named \Chapter2\CH02CubeFunctionsStart.xlsx and navigate to the data
model.

2. Choose Home > PivotTable. When the Create PivotTable dialog box opens, choose
Existing worksheet ‘Sheet1’!B2. You can really put this anywhere you like, but as to
keep the explanations below aligned to the right cells in your work, use the reference as
above.

3. Build out the PivotTable as follows by dragging the following fields into the specified
location in the PivotTable Fields pane:

Columns FiscalYear from DimDate
Rows H_Product from to DimProduct
Values SalesAmount from FactInternetSales

4. Now in the PivotTable, expand each of the Product Categories so that you see the
Subcategories as shown in Figure 2-43.

5. With your cursor anywhere in the PivotTable, navigate to PivotTable Tools > Analyze tab
> Calculations group > OLAP Tools > Convert to Formulas.

6. You will notice that the PivotTable has disappeared and that each of the cells has been
replaced with Cube Function, as can be seen in the formula bar. Move around what was
this PivotTable and explore the functions in the formula bar.

7. To complete the rest of the demo, look at \Chapter2\CH02CubeFunctionsEnd.xlsx to
see how the growth columns and conditional formatting were added on, as these are now
standard Excel functions that you would be expected to know.

Now, look at the two functions that are used in this table which are CUBEMEMBER and
CUBEVALUE. First look at the cells that make up the rows and columns and insect the Excel
formulas in each. These are from the dimension tables named DimDate and DimProduct, and
you can see that their members are retrieved using CUBEMEMBER. Then to get the numeric
values or aggregates, the CUBEVALUE function is used along with the member coordinates
from the 3 CUBEMEMBER to retrieve an aggregate from the cube. Navigate to the cells in the
range C4 to G24 to see this function in use.

To further break this down, let’s look at how the value of $16,560 in cell E5 is retrieved for
Bike Racks in the Year 2012. Listing 2-19 shows the four formulas that are used together to
retrieve the value.

https://support.office.com/en-us/article/Cube-functions-reference-2378132B-D3F2-4AF1-896D-48A9EE840EB2

The B2 CUBEMEMBER formula is used to retrieve the cube coordinates for Sum Sales,
which is the measure that you want displayed.
The B5 CUBEMEMBER formula is used to retrieve the cube coordinates Bike Racks in
the Product Hierarchy in DimProduct.
The E3 CUBEMEMBER formula is used to retrieve the cube coordinates for 2012 in
DimDate.
The E5 CUBEVALUE formula uses the three above CUBEMEMBER coordinates to
retrieve the Aggregate value of $16,560.

LISTING 2-19 Cube Member Functions
Click here to view code image

Cell B2 =CUBEMEMBER("ThisWorkbookDataModel","[Measures].[Sum of SalesAmount]")

Cell B5 =CUBEMEMBER("ThisWorkbookDataModel","[DimProduct].[H_Product].
[ProductSubcategory].&[Bike Racks]")

Cell E3 =CUBEMEMBER("ThisWorkbookDataModel","[DimDate].[FiscalYear].&[2012]")

Cell E5 =CUBEVALUE("ThisWorkbookDataModel",B2,$B5,E$3)

MORE INFO CUBE FUNCTIONS
Cube functions are very useful for building many different types of reporting solutions for
users within the context of Excel. Some good online references are:
https://PowerPivotpro.com/2010/06/using-Excel-cube-functions-with-PowerPivot/,
https://channel9.msdn.com/Events/TechEd/NewZealand/2013/DBI304, and
https://dataonwheels.wordpress.com/2015/01/27/Excel-bi-tip-18-using-cube-functions-to-
break-out-of-pivot-tables/.

Skill 2.3: Create Hierarchies
Hierarchies offer a very convenient way for users to drill up and down within data sets in a pre-
defined manner with ease. They are in use in almost every reporting situation in business, and
creating them makes for a more consistent and simple-to-use reporting environment for end-
users.

In this section, you will see that Hierarchies are created and managed from within the
Diagram View in Power Pivot. Once created, they become a new object in the data model.
Creating them is a straightforward task, so you will do some examples to support your
knowledge in this space. You will see Hierarchies in action when you move into Chapter 3
where the focus is around consuming the data models for reporting purposes.

This section covers how to:

Create date hierarchies
Create business hierarchies
Resolve hierarchy issues

https://powerpivotpro.com/2010/06/using-excel-cube-functions-with-powerpivot/
https://channel9.msdn.com/Events/TechEd/NewZealand/2013/DBI304
https://dataonwheels.wordpress.com/2015/01/27/Excel-bi-tip-18-using-cube-functions-to-break-out-of-pivot-tables/

Create date hierarchies
Likely the most common hierarchy you will see business is the date hierarchy. It is considered a
natural hierarchy in that it is commonly agreed upon how the parent-child relationships should
roll up. Not many would dispute that, from a calendar year point of view, January 1, 2018
should roll up into January and this should then roll into 2018. Another example of a natural
hierarchy is Geography. Once again, not many could argue about how a City such as Seattle
rolls into a State named Washington which rolls into a Country named the United States which
rolls into a Continent named North America.

Hierarchies are great in that they offer a convenient way for users of your data to drill from
Year to Quarter to Month to Day (or however you choose), using a seamless drill path. Common
date hierarchies include Calendar, Fiscal, and Semester, and each can be defined in a model if
needed.

In this example, you will create a simple date hierarchy that will allow users to roll data from
Day to Month to Quarter to Year.

1. Open \Chapter2\CH02HierarchiesDemo.xlsx and navigate to the data model.
2. Switch to Diagram View and then highlight the DimDate table.
3. To create the hierarchy, you can either click on the yellow folder icon in the upper-right

corner of the table as shown in Figure 2-44, or you can choose a field that you want in
your hierarchy and then right-click on it and choose Create Hierarchy from the context
menu.

FIGURE 2-44 Create Hierarchy button in Diagram View

4. Once you have completed Step 3, a new entry will appear at the bottom of the table as
shown in Figure 2-45.

FIGURE 2-45 Renaming the Hierarchy in Diagram View

5. Name this Hierarchy H_Calendar and then drag the following columns on top of the new
name to create the hierarchy.

CalendarYear
CalendarQuarter
EnglishMonthName

FullDateAlternateKey

6. Once you are complete, it should look like Figure 2-46. The order in which you do this is
significant, although it can be reordered using drag and drop or by right-clicking any other
nodes and choosing to move them up or down in the hierarchy.

FIGURE 2-46 The complete Date Hierarchy

7. Looking at this now, it would probably be nice to give the Hierarchy levels more
meaningful names for your users; the source column names are in brackets and can be
either hidden or displayed by right-clicking on a level. The name that will be used in
reporting tools is to the left of the source name. Let’s Rename the display columns as
follows:

CalendarYear to Calendar Year
CalendarQuarter to Calendar Quarter
EnglishMonthName to Month Name
FullDateAlternateKey to Date

8. To test this out, from within the data model, navigate to Home > PivotTable and
 Create a PivotTable in a new worksheet. As in Figure 2-47, with the PivotTable field pane

shown, expand the DimDate table, then drag H_Calendar to the Rows area and the
remainder of the fields to the locations below. Now, expand 2012 and Quarter 1.

FIGURE 2-47 Using the Date Hierarchy in a PivotTable

9. Notice that you can drill down into the hierarchy, but if you look closer, the sorting of the
months is incorrect. To fix this, go back to the data model and navigate to DimDate in the
Data View. Now find the EnglishMonthName and highlight it.

10. Choose Home > Sort And Filter > Sort By Column and choose MonthNumberOfYear
as the By Column as in Figure 2-48. Click OK when you are done.

FIGURE 2-48 The Sort by Column dialog box

11. If you now navigate back to the PivotTable, the values should be sorted properly. This is a
great feature of the data model in that the sorting property of this text label is now stored

in the data model so that it can be reused.
12. Click Save to save this file, but keep it open because you will use it in the next demo on

creating a business hierarchy.

Create business hierarchies
Business Hierarchies are maintained by individual businesses and are typically unique. For
example, most businesses have a way of splitting up how they view Geography over and above
what would be considered a Natural Hierarchy. Also, these hierarchies tend to change over time
as businesses change. Once a business territory grows, it might need to be split in two.

In this example, you will create a business hierarchy on the product. What is interesting about
this one is that you will need to get fields from multiple tables, since all fields for a hierarchy
must be in the same table. You will use the RELATED relational function in DAX to bring the
columns from the other tables.

1. Open \Chapter2\CH02HierarchiesDemo.xlsx and navigate to the data model.
2. The hierarchy that you want to create is the Product hierarchy. It should roll up from

Product to Product Subcategory to Product Category. What you want to do is something
like what you did in the previous example. Notice that each of the fields is in different
tables. This is the first thing that you need to fix.

3. In the Product table, you need to create two calculated columns. The first column should
be named ProductSubcategory and the second is ProductCategory, and both should
have the definitions as in Listing 2-20.

LISTING 2-20 Bringing columns into the product table to support the
hierarchy
Click here to view code image

--
Bring the EnglishProductSubcategoryName from ProductSubcategory into a column na
med

 ProductSubcategory
 =

 IF (
 ISBLANK (RELATED (DimProductSubcategory[EnglishProductSubcategoryName]))

,
 "No Product Subcategory Defined",

 RELATED (DimProductSubcategory[EnglishProductSubcategoryName])
)

 --Bring the EnglishProductCategoryName from ProductCategory into a column named
 ProductCategory

 =
 IF (

 ISBLANK (RELATED (DimProductCategory[EnglishProductCategoryName])),
 "No Product Category Defined",

 RELATED (DimProductCategory[EnglishProductCategoryName])
)

4. Once these columns are in the Product table, you can begin to create the hierarchy. Name
this Hierarchy H_Product and then drag the following columns on top of the new name to
create the hierarchy.

ProductCategory

ProductSubcategory
EnglishProductName

5. When complete the hierarchy should look like Figure 2-49.

FIGURE 2-49 Product hierarchy

6. Now that you have done this, there is little point to exposing the ProductCategory and
ProductSubcategory tables from data model to reporting tools. To hide the tables from the
client tools so that they cannot be used in reporting scenarios, right-click on
ProductCategory tables and choose Hide From Client Tools from the context menu. Do
the same for ProductSubcategory.

Additional notes on managing hierarchies
The following are some additional notes to keep in mind when creating and managing
hierarchies:

A table can have multiple hierarchies defined in it.
An individual column may be used in multiple hierarchies.
An individual column can only be used once in a single hierarchy.
You can use a hidden column when creating a hierarchy.
You can use multi-select to bring columns into a hierarchy. When doing so, the engine
assesses the cardinality of each column to determine how the parent-child relationships
need to be defined.
Any changes to Hierarchies will be reflected in downstream PivotTables and PivotCharts.
Be aware that making changes to Hierarchies that are heavily used can have negative side-
effects.
You can move the levels of the Hierarchy around after it has been created.
Additional levels can be added after initial creation.
A hierarchy can be renamed.
A hierarchy can be deleted.

Resolve hierarchy issues
One of the challenges with hierarchies is that a very common pattern that exists in organizations
that is not something DAX handles easily. The pattern is known as Parent-Child relationship
where the data is managed in a self-relating relationship such as the one in Figure 2-50.

FIGURE 2-50 Sample Data for Parent-Child Hierarchy

DAX provides a set of functions that can help you flatten the hierarchy out into a structure
much like you built in Demo 2-18. To achieve that result, you step through several functions
one-by-one in the files named \Chapter2\CH02RaggedHierarchiesDemo.xlsx.

Notice that the table in Figure 2-50 has been loaded into the data model and that several
Calculated Columns have been added to demonstrate breaking the source data down using
DAX. Listing 2-21 shows all the Calculated Columns that were added the OrgChart table in the
data model to flatten the data out. The results of these columns are shown in Figure 2-51.

LISTING 2-21 Calculated Columns used to flatten Parent-Child Hierarchy
Click here to view code image

//Calculated Column Named PATH which is used to build out the full path from Child to
 parent

 =PATH (OrgChart[Employee], OrgChart[Manager])

//Calculated Column Names LEVEL show the level of the hierarchy that the PATH value
 represents

 =PATHLENGTH (OrgChart[PATH])

//Calculated Column Named LEVEL 1. PATHITEM shows the element of the path for the pas
ses

 in level
 = PATHITEM (OrgChart[Path], 1)

//Calculated Column Named LEVEL 2

 = PATHITEM (OrgChart[Path], 2)

//Calculated Column Named LEVEL 3

 = PATHITEM (OrgChart[Path], 3)

//Calculated Column Named LEVEL 4
 = PATHITEM (OrgChart[Path], 4)

FIGURE 2-51 Parent-Child Function Results

DAX also has two other functions that are useful when working with Parent-Child
Hierarchies. Listing 2-22 shows the PATHCONTAINS and PATHITEMREVERSE functions,
and their results are shown in Figure 2-52.

LISTING 2-22 Additional Parent-Child Functions
Click here to view code image

//Calculated Column Named PATHCONTAINS Sanjay Patel. PATHCONTAINS returns TRUE if the
 string to find is in the PATH, otherwise FALSE is returned.

 =PATHCONTAINS([PATH], "Patel, Sanjay")

//Calculated Column Named REV LEVEL 1 – PATHITEMREVERSE returns the path in REVERSE
 order

 =PATHITEMREVERSE(OrgChart[PATH], 1)

//Calculated Column Named REV LEVEL 2– see above
 = PATHITEMREVERSE(OrgChart[Path], 2)

//Calculated Column Named REV LEVEL 3– see above

 = PATHITEMREVERSE(OrgChart[Path], 3)

//Calculated Column Named REV LEVEL 4– see above
 = PATHITEMREVERSE(OrgChart[Path], 4)

FIGURE 2-52 Parent-Child Function Results

MORE INFO PARENT-CHILD HIERARCHIES
For a complete discussion on how to handle Parent-Child hierarchies in DAX, refer to
https://msdn.microsoft.com/en-us/library/gg492192.aspx. Also, Marco Russo discusses the
topic in depth at https://www.daxpatterns.com/parent-child-hierarchies/.

Skill 2.4: Create Performance KPIs

https://msdn.microsoft.com/en-us/library/gg492192.aspx
https://www.daxpatterns.com/parent-child-hierarchies/

When a user performs analysis, it is often important to not only look at an absolute number such
as actual value of Sales, for example, but to compare its status against some type of trend to see
how well the actual number is performing against a set target. This forms a base to help users
more easily spot trends in their data that they should potentially do something about. This is
where Key Performance Indicators (KPIs) are useful. The KPI gauges performance of a value as
defined by a base measure against some form of target value. In this section, you will create the
actual value and target value, then will compare the two to indicate a status. This continues the
topic of enhancing your data model so that it is more complete and user-friendly.

This section covers how to:

Calculate the actual value
Calculate the target value
Calculate actual-to-target values

Calculate the actual value
The first thing to do is to create some measures in the model that will be used in the KPI
calculations. As mentioned in the opening of the section, you want to compare this year’s sales
to the prior period so that you can determine growth, which will serve as the actual value in the
KPI.

NOTE CREATING KPIS
KPIs can only be created on explicitly created measures in a data model. If you had
previously created an implicit measure via a PivotTable, it would not be available.

In this example, you create three measures that will be used to support calculating the actual
value for the KPI that you wish to create.

1. Open \Chapter2\CH02KPIStart.xlsx and navigate to the data model. Ensure that you are
in Data View and that you have the FactInternetSales table is open.

2. Now create the following measures in the Calculations Area and format them as
prescribed in Table 2-16.

TABLE 2-16 Measures to support the KPIs

Measure
Name

Calculation Format

Sales Sales:=SUM(FactInternetSales[SalesAmount]) $ English
(United
States)

SalesPY SalesPY:=CALCULATE([Sales],
SAMEPERIODLASTYEAR(DimDate[FullDateAlternateKey]))

$ English
(United
States)

SalesGrowth SalesGrowth:=DIVIDE(([Sales] - [SalesPY]) , [SalesPY], 0) Percentage

Calculate the target value
1. In the continuation of the first example around creating the actual value, you now set the

target values to support KPI calculations. In this example, you will use an absolute value as
opposed to creating a measure that provides the target values. In real business scenarios,
both occur frequently. The measure may be more useful in situations where targets differ
between different planning objectives, as opposed to the blanket values you apply to the
entire KPI as in this demo.

2. Now you are ready to create a KPI based on the SalesGrowth measure that you created. To
do this, right-click on the SalesGrowth measure that you created in the Calculation Area
and choose Create KPI from the context menu. Alternatively, you could highlight the
measure and then choose Home, Calculations, Create KPI. You will be presented with
the Key Performance Indicator (KPI) dialog as shown in Figure 2-53. Configure the values
as follows:

Define Target Value Choose Absolute values since you are using a percentage as the
base. Type 0 as the value.
Define Status Thresholds Choose -0.05 and 0.05 as the tolerances.
Icon Style Choose one of your liking. In this example, the default is chosen.

FIGURE 2-53 KPI Settings

3. Notice that you can also provide descriptions by clicking Descriptions, which is shown on
the bottom left of Figure 2-53.

KPI Description

Value Description
Status Description
Target Description

4. Once you have made the above configurations, click OK.
5. You will then notice that the SalesGrowth measure has a KPI icon next to it as shown in

Figure 2-54.

FIGURE 2-54 Measure as displayed in Calculation Pane

Calculate actual-to-target values
Now you need to consume the models that you just set up. To do this, you will build a
PivotTable to enable us to visually display the data. In this example, you create a visual to
compare the values.

1. From Power Pivot navigate to Home > PivotTables and when the dialog appears, choose
to add the Pivot to a new worksheet.

2. In the PivotTable Fields list, drag the following objects to these locations:

Filter H_Product
Rows H_Calendar
Values Sales > SalesPY > SalesGrowth Status and Sales Growth

3. Once you are complete, you should have a visual that looks like Figure 2-55.

FIGURE 2-55 Pivot with all the measures displayed plus the KPI status

MORE INFO CREATING KPIS
See the following sites for more information on creating KPIs with additional examples:
https://support.office.com/en-us/article/Key-Performance-Indicators-KPIs-in-Power-Pivot-

https://support.office.com/en-us/article/Key-Performance-Indicators-KPIs-in-Power-Pivot-e653edef-8a21-40e4-9ece-83a6c8c306aa

e653edef-8a21-40e4-9ece-83a6c8c306aa and the article at https://msdn.microsoft.com/en-
us/library/hh272049(v=sql.110).aspx.

Thought experiments
In this thought experiment, you will test your knowledge pertaining to the data model. As
practice for the exam, first, eliminate answers that you know are incorrect. This will help you
narrow your choices.

1. Which of these objects is not part of the Excel data model?

A. Measures
B. Tables
C. Relationships
D. Power Query

2. What property do you need to enable in the data model so that you can edit data in the data
model?

A. Enable Write Mode on
B. Updateable on
C. Enable Fast Load
D. The data model is read-only and therefore, you cannot edit data directly in the data model.

3. What might be a reason you would load data from SQL Server Analysis services into a data
model?

4. Will the relationship between these two tables be created if you join on Customer ID? Why
or why not? Assume that this data has been loaded into the data model but is being presented
here as Excel tables so that you can observe the data in both.

FIGURE 2-56 Sample Data to support question 4

5. Two tables are being pulled from a SQL database using the Table Import Wizard from
within Power Pivot, and no underlying relationships exist in the database between the two
tables. What options do you have for creating relationships?

6. Discuss the two sides of data model optimization and explain why you need to engage in an
Optimization mindset.

7. What is the correct way to build a DAX Measure named “Total Sales” in the
FactInternetSales table, which is meant to calculate the SUM of Sales Amount on the table
in Figure 2-57? Choose all that are correct.

https://support.office.com/en-us/article/Key-Performance-Indicators-KPIs-in-Power-Pivot-e653edef-8a21-40e4-9ece-83a6c8c306aa
https://msdn.microsoft.com/en-us/library/hh272049(v=sql.110).aspx

FIGURE 2-57 Relationship between Dim Currency and Fact Internet Sales

A. Total Sales = SUM(Sales Amount)
B. Total Sales := SUM(Sales Amount)
C. Total Sales := SUM([Sales Amount])
D. Total Sales := SUM(FactInternetSales[Sales Amount])

8. What is the result of the conversion when you write a calculated column by writing the
following formula: = "8" + "7"?

A. 87
B. 15
C. “8+7”
D. An error message

9. The following two measures have been created and saved to the data model with a home
table of FactInternetSales:

Click here to view code image

Total Sales := SUM(FactInternetSales[Sales Amount])
 Total Tax := SUM(FactInternetSales[TaxAmt])

You want to create a measure with the following name and definition in DimCustomers:
Click here to view code image

Total Sales := SUM(FactInternetSales[Sales Amount])

What happens when you save the measure?

10. Which functions in DAX return a one-column table that contains the distinct values from
the specified table or column? In other words, duplicate values are removed and only unique
values are returned. Choose all that are correct.

A. DISTINCT
B. HASONEFILTER
C. VALUES
D. HASONEVALUE

11. Which DAX function can you use to evaluate the year-to-date value of an expression in the
current context?

A. RUNNINGTOTALYTD
B. TOTALYTD
C. SUMTYD

D. ENDOFYEAR

12. When comparing the rows in two tables, which DAX function can be used to return the
rows in one table that do not appear in another table? Choose all answers that are correct.

A. INTERSECT
B. NATURALINNERJOIN
C. EXCEPT
D. EXCLUDE

13. What is the return data type for the following format string?
FORMAT(SUM('Internet Sales'[Sales Amount]), "#,##0.00#")

A. Whole Number
B. Decimal Number
C. Text
D. Currency

14. Which statement about Hierarchies is false?

A. A table can have multiple hierarchies defined on it.
B. An individual column may be used in multiple hierarchies.
C. An individual column that can only be used once is a single hierarchy.
D. You cannot use a hidden column when creating a hierarchy.

15. When creating a KPI, you need to set a Target value. What are the valid target values
sources?

A. Explicit Measure
B. Excel Table
C. Absolute value
D. Implicit Measure

Thought experiment answers
1. Answer D: Power Query is a tool within Excel for loading data. All of the other objects are

part of the data model.
2. Answer D: The data model is read-only. If you need to modify data in the data model it will

need to be done back at the source or in some location other than the data model.
3. Using Integration With Analysis Services, you can query the data directly in the model

without the need to bring it into Excel. Should you want to combine data from other sources
with the data from the model, you will either need to get the owner of the Analysis Services
source to bring the data into that model or you can do the same in the data model. Generally,
the first step in this process is for the Excel developer to bring the data into the model to test
it out and prove its value. Once this is done, you will make a choice in the future to continue
to manage this process in Excel or to pass it over to the cube owner so that integration can be
managed there. This is a typical iterative process and highlights the power of the data model.

4. The relationship as specified in the question will not be created. The data model will
generate the following error. This is an example of a Many-to-Many relationship, which is
not a valid relationship type.

FIGURE 2-58 Error Message from question 4

5. In this example, you have a few options. If you want this handled automatically, you could
first create the relationships directly in the database so that when the data is imported, the
relationships will come along with it. This assumes that you have the permissions to do so. If
you do not have this ability, you can create the relationships manually in the data model once
the tables are loaded in the model.

6. When you optimize and model you are doing two things. The first is making the model
perform promptly, which is what most people think of when you say the word
“optimization.” The second is making the model optimized from an end-user self-service
perspective. These are things like using friendly column and table names; removing
unneeded columns and tables so that the users can focus on what is important; building
hierarchies and KPIs; and adding DAX calculated columns and measures that ease reporting
and make it more consistent.

7. Answers C and D: Answer A has two flaws. Because you are creating a measure, you need
to end the measure name with a colon. Additionally, Sales Amount needs to be wrapped in
square brackets. Only answer B has the square brackets flaw. Both C and D are syntactically
correct.

8. Answer B: The addition operator will have the string value of 8 and 7 converted to decimal
numbers.

9. It will not be created, and you will get an error message stating that a measure or column
with the name Total Sales already exists and that you should choose a different name.

10. Answers A and C: The HASONEFILTER function returns TRUE when the number of
directly filtered values on provide column is one; otherwise it returns FALSE. The
HASONEVALUE function Returns TRUE when the context for providing the column has
been filtered down to one distinct value only. Otherwise, it returns FALSE.

11. Answer B: RUNNINGTOTALYTD and SUMYTD are not valid functions. ENDOFYEAR
returns the last date of the year in the current context for the specified column of dates.
TOTALYTD evaluates the year-to-date value of the expression in the current context.

12. Answer C: INTERSECT and NATURALINNERJOIN show rows that are in both tables.
EXCLUDE is not a valid DAX function.

13. Answer C: The return value is a string-containing value formatted as defined by the format
string provided.

14. Answer D: You can use a hidden column when creating a hierarchy.
15. Answers A and C: You cannot use an Implicit measure or an Excel table.

Chapter summary
Some of the advantages of the data model over traditional Excel objects are:

Overcomes Excel row limitation
Data model can be as 1/10 the size of equivalent data in Excel due to compression
It is an in-memory engine which translates into high speed of processing

The data model is composed of:

Tables
Columns from source systems
Calculated Columns
Measures
Relationships
Hierarchies
KPIs
Perspectives

Other data model facts:

The data model is read-only.
A workbook can only contain one data model.
A data model can contain many tables.
This WorkbookDataModel is the name of the object in Excel that represents the data
model.

You can use the Table Import wizard from within Power Pivot to import data, although the
options for sources are fewer than when using Power Query.
You can manually enter data in an Excel table within the same workbook where the data
model resides, then load that data to the Model. In previous versions of Excel, you could
create this as a linked table. Now it is a refreshable table that operates the same as getting
data using other objects.
Relationships can be created automatically if the metadata exists in the sources to support
them, or they can be manually created in the data model. No matter how relationships are
created, care should be taken ensure they are: a) set up and b) set up properly, as this
greatly influences the integrity of the data model.
Only one relationship can be active at a time between two tables. Multiple relationships
can exist and others will be set to inactive.
A relationship has a direction. In the Excel data model, filters can only flow in one
direction or what is called Single.
Relationships enable bringing tables together in much the same way a VLOOKUP does,
but with added performance and the ability to access the entire table.
Requirements for Relationships are:

They are on a single column.

Data Types must be compatible.
They contain no blank values.
One side must contain unique values.
The Cardinality of a relationship in the data model can only be one-to-many.

The DAX RELATED function is used to bring values from one table to another where the
tables are related. If you need to use the inactive relationship, use the
USERELATIONSHIP function. You also can use the LOOKUPVALUE function.
Calculated Columns are generally used to create values that are used in slicers, filters, or as
labels in rows and columns of PivotTables.
Measures are created to aggregate data. You can create implicit measures by using a
column from a table and dropping it into the values of a Pivot. The Implicit measure is
only accessible by the PivotTable that created it. An explicit measure is created in DAX
and is reusable across reporting solutions.
There are two Evaluation Contexts in DAX: The Row and the Filter context. It is important
to be aware of the Evaluation contexts that are present when building reporting solutions.
The DAX language has over 200 functions within it. They are categorized as:

Date and Time Functions
Time Intelligence Functions
Filter Functions
Information Functions
Logical Functions
Math and Trig Functions
Other Functions
Parent and Child Functions
Statistical Functions
Text Functions

It is possible to use DAX as a Query language. The EVALUATE clause is used is used to
define and execute a query that returns a table. The general syntax for a DAX query is:
Click here to view code image

[DEFINE { MEASURE <tableName>[<name>] = <expression> }
 { VAR <name> = <expression>}]

 EVALUATE <table>
 [ORDER BY {<expression> [{ASC | DESC}]}[, …]

 [START AT {<value>|<parameter>} [, …]]]

Hierarchies offer a very convenient way for users to drill up and down within data sets in a
pre-defined manner.
Date Hierarchies are the most common type of hierarchy in analytics. You can create a date
hierarchy as well as business hierarchies manually in the data model.
KPIs gauge performance of a value as defined by a base measure against some form of
Target value.

If you use measures in KPIs, they can only be created on explicitly created measures in a
data model.
When you define a target, you need to do define the following:

Set a Target Value which can be a Measure or an Absolute value
Set Status Thresholds
Choose an Icon Style

CHAPTER 3
 Visualize data

Data in a transactional format is not very useful for spotting trends or identifying
outliers in any reasonably sized set of information. Taking data and summarizing
it so that a reader can more easily absorb a large amount of information is a
highly important last step in the data analysis journey. Recently, as business users
have started to experience a deluge of data, trends have been moving toward more
visual means of presenting data as a starting point in analysis. A lot of focus has
been put on building dashboards and scorecards that enable a user to start analysis
at a highly aggregated entry point, and can then be guided through the process of
drilling down to details as more “why” questions are asked.

This chapter covers the different ways to present data for end-user
consumption. You start by looking at PivotTables to summarize data in a tabular
format that enables the classic slicing and dicing of data. You then move to
visualizing data using PivotCharts. And finally, in Skill 3-3 we look at the ever-
growing and improving integration points between Excel and Power BI for both
consuming and presenting data. Power BI offers some tremendous ways to share
the work done in an Excel workbook that enables you to get around the traditional
sharing challenges that have existed with Excel for some time now.

Skills in this chapter:
Skill 3.1: Create and manage PivotTables
Skill 3.2: Create and manage PivotCharts
Skill 3.3: Interact with Power BI

Skill 3.1: Create and manage PivotTables
PivotTables have long been a staple in the Excel analysts’ toolkit. With the advent
of the Excel Data model, the ability to navigate over huge datasets has been made
possible to extend the ability for a business user to quickly discover insights in
their datasets to enable better decision making. And as we have seen, the Data
Model also enables users to centralize logic in the form of Calculated Columns,
Measures, Hierarchies, Formatting properties, etc. This enables reuse and
consistency, which improves the quality and reliability of data products.

In this section, we take a deeper look at the many facets of a PivotTable that
can be configured to help improve presentation and ultimately usability. There are
many ways to format and interact with the PivotTable to influence this.

This section covers how to:

Format PivotTables
Format calculated measures
Filter data
Group and summarize data

Format PivotTables
When you create PivotTables, you should always be thinking about what you
would like your data product to look like once it is in your users’ hands. As a
designer, you have numerous options for formatting a PivotTable so that it is in
the most usable state possible for users. Some formatting options can either be
applied to the Data Model or made local to the PivotTable, and others can only be
applied to the PivotTable. These will be highlighted as we move through the
various options.

To begin looking at the options available, create a PivotTable so that you have
something to format. There are two ways to create a PivotTable. The first is from
within Excel, and the second is from within PowerPivot. The quickest way is to
do it from within PowerPivot. If you do it there, Excel detects that you want to
base the PivotTable in the Data Model, so you save some configuration options.

As a note, if you are basing the PivotTable on the Excel Data Model, you
cannot use the Recommend A PivotTable functionality that is available from
within Excel because it is not available when using the Data Model.

NOTE DEMO WORKING FILES
The Data Model as covered in Skill 3-1 Formatting.xlsx has had no
Optimization performed on it. If this term is not familiar, go back to Chapter
2 “Model data” to review the section titled “Optimize models for reporting.”
This has purposely been done so that you can see how to format your model
and what it takes to work your way toward a robust Data Model.

PivotTable overview

Let’s first start by creating an empty PivotTable. To do this, perform the following
steps:

1. Open the \Chapter 3\CH03 Skill 3-1 Formatting.xlsx workbook.
2. On the Insert tab, in the Tables group, click PivotTable. You will be

presented with the Create PivotTable dialog as in Figure 3-1.

FIGURE 3-1 The Create PivotTable dialog box

3. Make the following selections below:

In the Choose The Data That You Want To Analyze section, select Use
This Workbook’s Data Model.
In the Choose Where You Want The Pivottable To Be Placed section,
select New Worksheet.

4. Click OK when complete.
5. Save the workbook and leave it open for the next demo.

Alternatively, if you are already in Power Pivot, you can use the following
navigation path:

1. On the Power Pivot tab, in the Data Model group, click Manage. This will
open the Power Pivot window.

2. On the Home tab, click PivotTable. This option will not present you the
Create PivotTable dialog box from Figure 3-1 because it assumes you want
to use the Data Model as the basis for the PivotTable. You will, however, be
asked if you want to create the PivotTable in a New or Existing Worksheet.

Using either method above for adding a new PivotTable to the existing
worksheet will show you Figure 3-2. The PivotTable Fields pane is where you
will add and configure many of the elements that you add to a PivotTable. It will
appear whenever you click anywhere in the PivotTable. When you click out of the
PivotTable, it will disappear since it is only relevant when the PivotTable is open.
If you are in the PivotTable and do not want it on, you can toggle it on or off by
doing the following. Under the PivotTable Tools, on the Analyze tab, in the
Show group, click Field List to toggle it on or off.

FIGURE 3-2 Empty PivotTable and PivotTable Fields pane

The areas of interest within the PivotTable Fields list are shown in this list, and
the numbers correspond to the highlighted number areas in Figure 3-2.

1. PivotTable This is the area where data will be presented as you add items
from the other parts of the PivotTable Fields pane.

2. Table Status This allows you to show either All the tables in the data model
or only the ones that are Active in the PivotTable. All is desirable when
building a report initially, but after you have it defined the way you want it,

you can choose Active, which will only show the tables that are used in the
Pivot. Optionally, you can Pin a table to the active tab, even if it’s not
currently being used, by right-clicking the table and selecting the Show In
Active Tab option from the context menu. Once it is in the active tab you
can remove it by doing the reverse of the previous step. Take note that you
cannot remove a table from the active tab using this technique if it is being
used in the PivotTable.

3. Search Some data models, no matter how well-designed, can on occasion
become large. In these instances, you can use the search function to find the
field that you are looking for using the names that are assigned in the Data
Model.

4. Table List What appears in this window depends on the option that you
have selected in the highlighted area shown in Figure 3-2. It will list tables
that are in the Data Model if you have them All selected or only those in use
if you have Active selected.

5. Filters area Fields here are added to the PivotTable as a Report Filter. This
option will be discussed in-depth in the section on Filtering data.

6. Columns area Fields here are added to the columns axis as labels on the
PivotTable. You have a great deal of flexibility, which will be discussed
shortly.

7. Rows area Fields that are added here are added to the rows axis as labels on
the PivotTable. As with columns, you have a great deal of flexibility, which
will be discussed shortly.

8. Values area Fields that you add here are the things that you are trying to
measure when using a PivotTable. You either use Explicit Measures that you
created in the Data Model, or you can choose to add any fields here, and the
PivotTable will choose the aggregation method that makes the most sense. If
a default aggregation has been set in the Data Model, it will use that. You do
have the option to override this within the PivotTable.

9. Defer Layout Update When you add a PivotTable to a worksheet and begin
to interact with it, the values are constantly being refreshed. With a Data
Model that has lots of data, if you have an under-resourced machine, these
updates can take time. If you know the structure of the PivotTable that you
want to build, you can build it from the model definition and then manually
refresh the data when you choose to.

10. PivotTable Tools When you have a PivotTable highlighted, you will get two
new context sensitive tabs in the ribbon. These are the Analyze and Design
tabs, which are used to perform customizations on your PivotTable.

Populate the PivotTable
Now that you have had a walkthrough of the PivotTable Field pane, it is time to
add to the empty PivotTable you created earlier so that you can see what can be
formatted. There are many options available for formatting, and demos are best to
show how to improve your model when you are ready for production
consumption.

1. Open the \Chapter 3\CH03 Skill 3-1 Formatting.xlsx workbook, which
you previously worked on and saved.

2. Using the empty PivotTable shown in Figure 3-2, add the following columns
to the Fields pane:

Columns area CalendarYear from DimDate.
Rows area SalesTerritoryCountry and SalesTerritoryRegion from
DimSalesTerritory. Ensure that SalesTerritoryCountry is listed first so
that they nest properly.
Values Freight from FactInternetSales.

3. The first thing is to name your PivotTable something meaningful. This will
be helpful when you start working with multiple PivotTables, Slicers,
Timelines, and PivotCharts in a Dashboard-like scenario. This enables you
to easily find the object you are looking for when connecting objects
together.

4. With the Pivot table highlighted, under PivotTable Tools, on the Analyze
tab, in the PivotTable group, click on the PivotTable Name text box.
Change the name from PivotTable1 to PTFreightByRegionAndYear.

5. Your unformatted PivotTable should look like Figure 3-3. When you are
done, save your work because you will need the PivotTable in this form for
the next exercises. Between now and your next exercise, you will be
experimenting with different layout, styling, and formatting options.

FIGURE 3-3 Unformatted PivotTable

Layout and styling
When in a PivotTable, Under PivotTable Tools, on the Design tab, you can see
the formatting options as shown in Figure 3-4. In the Layout group, notice that
you can control how Subtotals and Grand Totals are displayed, in addition to
controlling the overall Report Layout, including the ability to insert blank rows
between groups. Finally, there are additional options for styling the PivotTable
through the style options and PivotTable Styles groupings, and each will be
covered shortly. The styling options that are discussed in this section are made
locally to the PivotTable and cannot be controlled by the Data Model itself.

FIGURE 3-4 The Excel ribbon

In the Layout group, you can configure how Grand Totals and Subtotals are
displayed in the PivotTable. To control how Subtotals are displayed, you can
experiment with the following steps.

1. Under PivotTable Tools, on the Design tab, in the Layout group, click
Subtotals.

2. From the command drop-down, you can select from the options list below.
Experiment with the options below to view their effects on the PivotTable
display.

Do Not Show Subtotals
Show all Subtotals at Bottom of Group
Show all Subtotals at Top of Group
Include Filtered Items in Totals

Next, to control how Grand Totals are displayed, you can experiment with the
following steps.

1. Under PivotTable Tools, on the Design tab, in the Layout group, click
Grand Totals.

2. From the command drop-down, you can select from the options list below.
Experiment with these options to view their effects on the PivotTable
display.

Off for Rows and Columns
On for Rows and Columns
On for Rows Only
On for Columns Only

3. There is no need to save these steps.
Grand Totals can also be configured by performing the following actions:

4. Under PivotTable Tools, on the Analyze tab, in the PivotTable group, click
Options.

5. In the PivotTable Options dialog, click the Totals & Filters tab. Then in
the Grand Totals section you can choose to turn Grand Total off for rows
and/or columns.

MORE INFO PIVOTTABLE OPTIONS
The PivotTable Options dialog box has a host of options that can be
configured. For a list of options and explanations of each, please visit the
following site: https://support.office.com/en-us/article/pivottable-options-
27c02eb7-27de-4b3f-9677-c48e3fe7637b.

Once you have your PivotTable created, you may want to change the layout of
the actual Pivot table based on your users’ needs. There are three different

https://support.office.com/en-us/article/pivottable-options-27c02eb7-27de-4b3f-9677-c48e3fe7637b

Report Layout Forms that you can use to display a PivotTable. They are listed
and described below:

Compact Form This is the default behavior for a PivotTable and can be
seen in Figure 3-3. It displays items from different row area fields in one
column and uses indentation to differentiate between fields. This takes up
less space, which leaves more room for numeric data. Expand and Collapse
buttons are displayed (which can also be turned off) so that you can display
or hide details.
Tabular Form This displays one column per field, and fields are kept at the
same level across the display. This is shown in Figure 3-5.

FIGURE 3-5 PivotTable in Tabular Form

Outline Form This is like tabular, but it displays subtotals at the top of
every group because items in the next column are displayed one row below
the current item. Figure 3-6 shows this format.

FIGURE 3-6 PivotTable in Outline Form

Often it is helpful to be able to have Blank Rows between groups of data in a
PivotTable to help draw emphasis to the data. To do this, you can use the Blank
Rows command to toggle the feature on and off. To do this, under PivotTable
Tools, on the Design tab, in the Layout group, click Blank Rows after each item.

The PivotTable Style Options group in the Design Tab deals with styling the
PivotTable with headers and banding. The following options can be toggled on
and off based on preferences. Experiment with each of these to see their effects
on the PivotTable.

Row Headers Highlights the row headers.
Column Headers Highlights the columns headers.
Banded Rows Shades every other row to make it easier to distinguish one
row from another.
Banded Columns Shades every other column to make it easier to
distinguish one column from another.

The final grouping option for formatting the PivotTable on the Design tab is
PivotTable Styles group. Here you can change the coloring, formatting, and
borders using the predefined Light, Medium, and Dark styles. In addition, you
may create your own New PivotTable style as you determine an appropriate
corporate standard. Once again, put your PivotTable in focus and try some of the
styles out.

General Pivot Table commands
The following are a series of general commands that you can apply to your
PivotTables. The styling options that are discussed in this section are made
locally to the PivotTable and cannot be controlled by the Data Model itself.

Once you have a PivotTable formatted, you may wish to clear all of the
formatting that you applied and start the process again. Under PivotTable Tools,
on the Analyze tab, in the Actions group, click the Clear drop-down. From here
you have two options: Clear All and Clear Filters.

The Clear All command resets your PivotTable, but does not delete it. The
data connection, placement, and cache remain the same. If you have a PivotChart
associated with the PivotTable, Clear All also removes related PivotChart fields,
chart customizations, and formatting.

The other option is to use Clear Filters if you have any filters applied to the
PivotTable.

To Move your PivotTable to a new or existing worksheet, you can do the
following. Under PivotTable Tools, on the Analyze tab, in the Actions group,

click the Move PivotTable. You may need to do this in an instance where you are
arranging a series of Dashboards and the flow needs to change within the
workbook.

The freshness of data is always important to manage. You can manually refresh
your data for all sources or a single PivotTable. If you want to refresh all the
sources in the workbook you use the Refresh All command. If you only want to
refresh the connections of the current PivotTable, you choose Refresh while the
PivotTable that you want to refresh is selected. Both commands can be found
under the Analyze > Data > Refresh drop-down. Alternatively, you can set the
PivotTable to Refresh data automatically when opening the workbook. This can
be done by doing the following:

1. Under PivotTable Tools > on the Analyze tab > in the PivotTable group >
click

 PivotTable Options.
2. In the PivotTable Options dialog, click the Data tab, and select Refresh

Data When Opening the File.

When performing refreshes, it is also advisable to review how you want the
layout and formatting to respond. This can be done by the following:

1. Under PivotTable Tools, on the Analyze tab, in the PivotTable group, click
PivotTable Options.

2. In the PivotTable Options dialog, click the Layout & Formatting tab.
Review the following two options:

Autofit column widths on update
Preserve cell formatting on update

If the source of your PivotTable needs to change, you can do so by editing the
Connection Properties. To change these settings, do the following. Under
PivotTable Tools, on the Analyze tab, in the Data group, click Change Data
Source and select Connection Properties.

MORE INFO CHANGING THE SOURCE FOR A PIVOTTABLE
For more information on how to change the source of a PivotTable read the
following article: https://support.office.com/en-us/article/change-the-source-
data-for-a-pivottable-ad8ed968-ada1-4dde-9f72-30e07782dccd.

The last General commands you will review are used to change what you see
when working with a PivotTable. Under PivotTable Tools, on the Analyze tab, in

https://support.office.com/en-us/article/change-the-source-data-for-a-pivottable-ad8ed968-ada1-4dde-9f72-30e07782dccd

the Show group, you will see three options as in Figure 3-7. By clicking any of
the items in the Show group, the corresponding number that matches within the
PivotTable will react to the click. These are also described below and correspond
to the numbers in Figure 3-7.

1. Field List Will toggle the PivotTable Field list on and off.
2. +/- Buttons Will turn the expand and collapse buttons on or off, should you

have data in your PivotTable that enabled them.
3. Field Headers Turns the Field headers on and off in the PivotTable.

FIGURE 3-7 The PivotTable Interface and how it will react to the toggle
commands in the Show groups

Formatting values in the PivotTable
Should you want to format the values that appear in the PivotTable, you have the
option of making changes to the Field Settings on both the Rows and Column
areas and the Value Setting on the Values area.

NOTE FORMATTING VALUES IN THE PIVOTTABLE
Keep in mind that when you make formatting changes here that they are local
to the PivotTable you are working with. Should you want to make this
formatting global, you are advised to move the settings into the Data Model.

We will review how to do this in the next section, but for now let’s focus on
how to make local changes.

First let’s look at the Values settings, in the Values area of the PivotTable
Field pane.

1. With the PivotTable selected, click the drop-down arrow on the right side of
the Sum of Freight column in the Values area of the PivotTable Fields pane.

2. Choose Value Fields Settings.
3. You will be presented with the Value Fields Settings dialog box as in

Figure 3-8.

FIGURE 3-8 Formatting Values in a PivotTable

The first thing that you notice in the Value Fields Settings dialog is the Source
Name for the column that you are evaluating. This is important to know when
debugging calculation issues, especially if you are using a custom name in your
reporting layer.

Users will often want to use a Custom Name for display purposes that may not
match the source name. To change the name, you can type in a name of your
choice in the text box.

Also notice that you have several ways to summarize the field you are working
with on the Summarize Values By tab. These options are summarized and
described in Table 3-1.

TABLE 3-1 Summarize values filed by options

Function Summarizes
Sum The sum of the values. This is the default

function for numeric values.
Count The number of values. The Count summary

function works the same as the COUNTA
worksheet function. Count is the default
function for values other than numbers.

Distinct
Count

The number of distinct values.

Average The average of the values.
Max The largest value.
Min The smallest value.
StDev An estimate of the standard deviation of a

population, where the sample is a subset of
the entire population.

StDevp The standard deviation of a population,
where the population is all of the values to
be summarized.

Var An estimate of the variance of a population,
where the sample is a subset of the entire
population.

Varp The variance of a population, where the
population is all the values to be
summarized.

You can also format the actual number by clicking the Number Format button
in Figure 3-8. This will give you the standard ways to format data as you would
have seen in Excel.

The Show Values As tab in the Value Field Settings dialog lets you choose
how you want to display a field’s value relative to others in the PivotTable. The
default value for this is no calculation, which will just show the summarized
value for that given Row and Column intersection point.

MORE INFO SUMMARY FUNCTION OR CUSTOM
CALCULATION OPTIONS FOR A FIELD IN A PIVOTTABLE
For more details on how to change summary functions and how to show
values, refer to the following article: https://support.office.com/en-
us/article/change-the-summary-function-or-custom-calculation-for-a-field-in-
a-pivottable-report-ea8945fb-9969-4bac-a16c-4f67b0f7b239.

Next, you will look at the options to format the Rows or Columns with the
Field Settings option. Perform the following:

1. Close the dialog boxes from Figure 3-8 if you still have them open.
2. With the PivotTable selected, click the drop-down arrow to the right of

CalendarYear in the Columns area of the PivotTable Fields pane.
3. Choose Field Settings in the context menu. You will be presented with

Figure 3-9.

FIGURE 3-9 Field Settings dialog

4. In the Subtotals & Filters tab of the Fields Settings dialog, you can turn
off subtotals for that Field or choose to use the Automatic value set at the
PivotTable, as described earlier in this section. On this tab, you also have the
option to include new items that come into the data set in any manual filters

https://support.office.com/en-us/article/change-the-summary-function-or-custom-calculation-for-a-field-in-a-pivottable-report-ea8945fb-9969-4bac-a16c-4f67b0f7b239

that have been set. This can be useful when you have a report set to filter
data the way that you want, but the underlying values are changing, and you
do not want to have them flow into the report.

5. In the Layout & Print tab of the Fields Settings dialog, you can change the
following items:

Layout
Show item labels in outline form
Display labels from the next field in the same column (compact form)
Display subtotals at the top of each group
Show item labels in tabular form
Repeat item labels
Insert blank line after each item
Print
Insert page break after each item

Let’s now go through a demo of Formatting a PivotTable.

6. Open the \Chapter 3\CH03 Skill 3-1 Formatting.xlsx workbook, which
you previously worked on and saved.

7. In the Field Settings for SalesTerritoryCountry do the following:

1. Insert blank line after each item label in the Layout & Print options.
2. Modify the Custom Name by changing the default value of

SalesTerritoryCountry to Sales Territory Country. Click OK when
complete.

8. In the Values Field Settings for Sum of Freight do the following and then
click OK when complete.

1. Format the numeric values by modifying the format of the Freight
values. Click the Number format button and then on the Format Cells
dialog select Currency which is under the Category grouping. Leave
all other selections as defaults.

2. Rename the Custom Name value from Sum of Freight to Average
Freight.

3. Change the summarization of the field from sum to average by
selecting Average from the Summarize Values By tab.

9. Turn off the Field Headers. Under PivotTable Tools, on the Analyze tab, in
the Show group, click Field Headers.

10. Now let’s change the Report Layout to Tabular from the default of Compact.
Under PivotTable Tools, on the Design tab, in the Layout group, click
Report Layout and select Show in Tabular Form.

11. In the rows bucket on the Pivot Table, swap the SalesTerritoryGroup and
SalesTerritoryRegion.

12. Once complete, save your model, which should look like Figure 3-10.

FIGURE 3-10 Formatted PivotTable

Optimizing the Data Model
Now that you have looked at some of the formatting options for the PivotTable
itself, it is time to review implementing these changes at the Data Model level. As
mentioned earlier, making formatting changes as we did directly in the PivotTable
are local to that PivotTable and would need to be repeated for each PivotTable
that you create that needs similar formatting. This is normal for some formatting
options that are only available at the PivotTable level, but other formatting
options should be centralized in the Data Model. Some of the things that you
centralize will be demonstrated via an exercise where you will do the following:

Remove Columns from Data Model Remove those that are not useful in
analysis or the Data Model.
Hide Table and Columns Hide those that are not useful in analysis but
needed for the Data Model.
Naming Conventions Provide intuitive naming conventions for tables and
columns.
Table and Column Descriptions For ease of maintenance, add table and
column descriptions to each.
Data Types Choose the correct data type for columns.
Columns Formats Choose the appropriate formats for the values in a
column.
Create Explicit Measures This will be done in the next section.
Column Sorting Enables sorting of columns by using the values in another
column.
Data Categorization Adds extra metadata to the columns that helps
reporting tools better interpret data values.
Set Summarize By Property This applies a default summary method for a
column so that when it is used in a PivotTable, the proper summarization
method is chosen by the PivotTable.

Each of these was explained in detail in Skill 2.1. In the following demos, we
will drive these changes back to the Data Model so they are globally available to
all PivotTables and PivotCharts that use the Data Model. We will go through each
of the options above to prepare our model for general use.

1. Open the \Chapter 3\CH03 Skill 3-1 Optimizing.xlsx workbook.
2. Look at the Data Model and note that it is very rudimentary and has not

been optimized. You should notice the tasks we outlined above have not
been applied to this Data Model. These steps are usually completed as part
of modeling, but we will perform them here to emphasize the process of
optimization.

3. The first thing is to Remove columns from the Data Model that are not
needed for Analysis to support the Data Model. From Power Pivot, ensure
that you have the table you want to modify highlighted in either the Diagram
View or Data View. Navigate to Design, and then click Table Properties to
open the Edit Table Properties dialog as shown in Figure 3-11. From here,
you exclude columns that you don’t want imported into the Data Model by
Unchecking the Check box next to each column name that needs to be

excluded. Follow this entire procedure for each of the table and column
pairings that are listed in Table 3-2, and click Save after you have completed
each table. Note that you could have performed these steps when you did
your initial import, per Skill 2.1.

FIGURE 3-11 Edit Table Properties dialog

TABLE 3-2 Columns to remove from the model

Table Column to Remove
FactInternetSales DueDate

ShipDate
DimCustomer SpanishEducation

FrenchEducation
SpanishOccupation
FrenchOccupation

DimDate SpanishDayNameOfWeek
FrenchDayNameOfWeek
SpanishMonthName
FrenchMonthName

DimProduct SpanishProductName
FrenchProductName
LargePhoto
FrenchDescription
ChineseDescription
ArabicDescription
HebrewDescription
ThaiDescription
GermanDescription
JapaneseDescription
TurkishDescription
StartDate
EndDate
Status

DimPromotion SpanishPromotionName
FrenchPromotionName
SpanishPromotionType
FrenchPromotionType
SpanishPromotionCategory
FrenchPromotionCategory

4. Now let’s hide the ProductCategory and ProductSubcategory tables from
client tools because they have no use in reporting. The columns that are
needed from these two tables to support the H_Product Hierarchy have been

brought into the Product table using the DAX RELATED function. To hide a
table in Diagram View, right-click on the DimProductCategory table, and
choose Hide from Client Tools from the context menu. Repeat this
procedure for DimProductSubcategory. You will notice that the tables are
still visible but will become grayed-out in the diagram, which signifies that
they cannot be seen in client tools but are still usable when performing
modeling. If you now navigate back to the PivotTable, you will see that they
no longer appear in the Table List on the PivotTable Fields pane. You do
not need to do this, but to allow the tables to be seen again, you can go back
to the table and choose Unhide from Client Tools. As a note, this can also
be done from the Data View.

5. Now you will hide unneeded columns from each table from client tools. In
Diagram View, find all fields that are listed in Table 3-3 and hide these
from client tools. In Diagram View, right-click on each of the fields and
choose Hide From Client Tools. Once you are done, they will become
grayed-out in the model, which signifies that they cannot be seen in client
tools, but are visible and usable when forming modeling. As a note, you can
choose multiple fields at once using the standard Windows multiselect
commands. This can also be performed from the Data View, but is far easier
to do in Diagram View.

TABLE 3-3 Columns to Hide From Client Tools

Table Columns
FactInternetSales ProductKey

OrderDateKey
DueDateKey
ShipDateKey
CustomerKey
PromotionKey
CurencyKey
SalesTerritoryKey

DimCustomer CustomerKey
GeographyKey

DimPromotion PromotionKey
PromotionAlternateKey

DimCurrency CurrencyKey
CurencyAlternateKey

DimSalesTerritory SalesTerritoryKey
SalesTerritoryAlternateKey

DimDate DateKey
DimProduct ProductKey

ProductSubcategoryKey

Now let’s give the tables in the model friendlier names by renaming them in
the Data Model. Note that if the tables had been imported using the Query Editor,
you would need to perform these operations back in the Query Editor. In this
demo, our tables were imported using PowerPivot so you can perform this as
directed without error. If you had tried to rename tables that were imported using
the Query Editor, you would receive the Error Message as shown in Figure 3-12.

1. In our case, you can right-click on the Table Name in either the Diagram
View or Data View and then choose Rename from the context menu. When
done, hit Enter so that the change takes effect. Do this for all the tables listed
in Table 3-4.

FIGURE 3-12 Error message indicating that renames must be done Power
Query

TABLE 3-4 Table Renaming

Original Table Name New Table Name
FactInternetSales InternetSales
DimCurrency Currency
DimCustomer Customer
DimDate Dates
DimPromotion Promotion
DimSalesTerritory SalesTerritory
DimProduct Product

2. Now let’s give some of the columns names in the model friendlier names by
renaming them in the Data Model. Once again, if the tables underlying the
columns had been imported using the Query Editor, you would need to
perform these operations back in the Query Editor. In this demo, our tables
(and hence columns) were imported using PowerPivot, so you can perform
this as directed without error. If you had tried to rename columns that were
imported using the Query Editor, you would receive the same error message
shown in Figure 3-12.

3. In our case, in either the Diagram View or Data View, you can right-click
on the Column Name that you want to change and then choose Rename
from the context menu. When done, hit Enter so that the change takes effect.
Do this for all the columns listed in Table 3-5.

TABLE 3-5 Column Renaming

Table Original Column Name New Column
Name

Customer EnglishEducation Education
EnglishOccupation Occupation

Dates EnglishDayNameOfWeek DayNameOfWeek
EnglishMonthName MonthName

Product EnglishDescription Description
EnglishProductName ProductName

Promotion EnglishPromotionName PromotionName
EnglishPromotionType PromotionType
EnglishPromotionCategory PromotionCategory

4. Let’s now examine the data types in the model and choose the correct data
type for each column. The only column that does not have the correct data
type (for this demo) is the DiscountAmount in InternetSales. Change this to
currency by ensuring the DiscountAmount field is highlighted in the Data
View and then navigate to Home > Formatting > Data Type and choose
Currency from the drop-down list. You may get the Data might be lost
error message as in Figure 3-13. If so, read the warning and understand what
it is telling you and then click Yes to continue.

FIGURE 3-13 Data might be lost warning

5. Format the values in the UnitPriceDiscountPct column as a %. To do this,
highlight the UnitPriceDiscountPct column in the Data View and navigate

to Home > Formatting > Format and choose Percentage from the drop-
down box.

6. If you require Explicit Measures to be created, you can do them here, but
our model has enough in the way of Explicit measures. Notice that we have
an Average Freight measure that we will format later. This can be used in
place of the implicit measure named Average Freight that we have in the
PivotTable.

7. Set Column Sorting on the MonthName column. In Data View, highlight the
MonthName column in the Dates table. Now navigate to Home > Sort and
Filter > and click Sort by Column. In the Sort by Column dialog, ensure
the Sort Column drop-down box has MonthName selected, and then in the
By Column drop-down box choose MonthNumberOfYear. Click OK
when complete.

8. Data Categorization adds extra metadata to columns of a certain type. Let’s
set two columns up to demonstrate. In Data View, ensure the SalesTerritory
table is highlighted and then ensure the SalesTerritoryCountry column is
highlighted within the table. Navigate to Advanced > Reporting
Properties > Data Category > and choose Country/Region. It is likely that
the Data Model has suggested that category for you already. Repeat the
previous steps for SalesTerritoryRegion and choose Continent as its
category. Setting these properties will help reporting tools understand that
the text values in each column are not just any text, but that they represent
geographical attributes.

9. And finally, set the Summarize By Property for our metrics. For each of the
columns in Table 3-6, follow this procedure. Highlight the column in the
InternetSales table and then navigate to Advanced > Summarized By, and
choose the value in the drop-down box that corresponds to the Summarize
By value in Table 3-6. Note that some of the values that the Data Model
thought could be summarized, like the SalesOrderLineNumber, should never
be summarized because it makes no sense to add up these values.

TABLE 3-6 Summarize By Properties

Table Column Summarize
By

InternetSales SalesOrderLineNumber Do not
summarize

RevisionNumber Do not
summarize

OrderQuantity Sum
UnitPrice Sum
ExtendedAmount Sum
UnitPriceDiscountPct Do not

summarize
DiscountAmount Sum
ProductStandardCost Do not

summarize
TotalProductCost Sum
SalesAmount Sum
TaxAmt Sum
Freight Sum

Go to the PivotTable and add the Average Freight Explicit Measure from
the InternetSales table to the Values area. At this point, take note of the fact
that it has not been formatted. As opposed to formatting right in the PivotTable,
go back to the PowerPivot and proceed with the next step.

10. Let’s change the format of the measure from within Excel to demonstrate
the different places where measures can be managed. Navigate to the Power
Pivot tab, Calculations, Measures, and choose Manage Measures. In the
Manage Measures dialog, choose Average Freight and then click Edit.
This will open the Measure dialog box as shown in Figure 3-14.

11. In the Category selection at the bottom of the dialog, choose Currency and
leave the Symbol and Decimal places values as their defaults. Click OK
when complete.

FIGURE 3-14 Measures management dialog

12. If you now return to the PivotTable, you will see that the new formatting has
propagated to the model. If you had applied formatting at the PivotTable
level first, the formatting you added to the model would not override what
you did in the PivotTable. Despite the fact the formatting has been centrally
set, you can override it in the PivotTable when necessary.

13. Save your work.

Format calculated measures
Once you create a Measure, it is advisable to provide it with a format you intend
users to use when reporting. Formatting is a display setting only and does not
affect how the data is stored in the Data Model.

Once the measure is created, you have the option to change the formatting to
one of:

Decimal Number
Whole Number
Percentage
Scientific
Currency

Date
TRUE/FALSE

Any Date formats that begin with an asterisk (*) will respond to changes in
regional date time settings that are specified at the operating system level. To see
which date formats are marked with an asterisk (*), do the following:

1. In Data View, ensure that the Dates table is highlighted and then highlight
the FullDateAlternateKey column.

2. From the Data Model, navigate to Home > Formatting > Format, and
choose More Formats, which will open the Formatting dialog shown in
Figure 3-15

FIGURE 3-15 Formatting dialog

3. In the Category selection box, choose Date, which will then change the
drop-down box to be a list of date formats.

4. In the drop-down, find a value with an asterisk next to it. The two options
that are available are General and Short. In Figure 3-15 we have the
General date format chosen.
As a reminder, you can also take advantage of the DAX FORMAT function

to format a data field in an acceptable manner. To review how to achieve this,
refer to Chapter 2 in the section on writing DAX queries where an example for
the FORMAT function was presented. Do note that once formatted, numbers
and dates become text strings and you can’t perform calculations on them.
Let’s take the measures in the Data Model and ensure that they are formatted
properly.
5. Open the \Chapter 3\CH03 Skill 3-1 Optimizing.xlsx workbook you had

been previously working with and navigate to the Data Model.
6. Format each of the measures in Table 3-7. Choose each Measure one by one

in the

Calculation Area and then choose Home > Formatting > Format and
apply each format as indicated.

TABLE 3-7 Measure Formats

Measure Home Table Format
Most Recent Order Date InternetSales Date
Average Sales Amount
Rounded

InternetSales Whole
Number

Average Freight InternetSales Currency
Sales over one million
dollars

InternetSales TRUE/FALSE

Total Sales InternetSales Currency
Total Cost InternetSales Currency
Profit Margin InternetSales Percentage

Filter data
Users often do not want to see an entire data set and are usually interested in
smaller, more focused slices of data. If you want to narrow the data in a
PivotTable based on criteria that has been specified, you can take advantage of
filters. There are several ways to filter data that is contained within a PivotTable.
You can use the following methods:

Filter data using the PivotTable
Add a PivotTable Filter
Add a Slicer
Add a Timeline

The first thing that we will do is add all of the filter types that we listed above
to the Excel sheet so that we can demonstrate how to use them.

1. Open \Chapter 3\CH03 Skill 3-1 Filtering.xlsx workbook and ensure that
you see the PivotTable that has been created for you.

2. With your cursor in the PivotTable, ensure that the PivotTable Fields pane
is visible.

3. Next, from the DimCustomer table, drag the MaritalStatus column to the
Filter area in the PivotTable Fields pane.

4. Now let’s create a slicer. With your cursor outside of the PivotTable,
navigate to Insert > Filters, and click Slicer.

5. In the Existing Connections dialog, click the Data Model Tab and ensure
that This Workbook Data Model is selected and click Open.

6. On the Insert Slicers dialog, click the All tab and then find the
DimCustomer table and check the Gender checkbox. Click OK when
complete.

7. In the newly created Gender slicer, click M and then F. Notice that nothing
happened. This is because the slicer has not yet been set up to interact with
the PivotTable. To do this, right-click the Gender Slicer and choose Report
Connections from the context menu. As a note, if you had your cursor in
the PivotTable in step 4, the association would have been made for you
automatically.

8. In the Report Connections (Gender) dialog, click PivotTable1. This will
associate the slicer and PivotTable.

9. Now add a timeline. This time with your cursor inside the PivotTable,
navigate to Insert > Filters, and click Timeline.

10. In the Insert Timelines dialog, find the FactInternetSales table and check
the OrderDate field. Notice that the Insert Timelines dialog has only picked
up on columns that have a date data type. Click OK when complete.

11. And finally, in the newly created timeline, click the drop down in the upper
right corner that says MONTHS and choose YEARS.

12. When you are complete, your screen should look like Figure 3-16.
13. Save your work as \Chapter 3\CH03 Skill 3-1 Filtering.xlsx.

FIGURE 3-16 PivotTable with filter locations highlighted

In Figure 3-16 you will notice four distinct areas where filtering can be
applied:

Callout Bubble 1 on the X and Y axis of the PivotTable contains several
areas where filters can be applied. We will cover these options in Filter data
within the PivotTable.
Callout Bubble 2 is the Pivot Table Filter.
Callout Bubble 3 is the Slicer.
Callout Bubble 4 is the Timeline.

IMPORTANT FILTER CONTEXT
Recall that in Skill 2.2, we introduced the concept of the Filter Context when
writing DAX. The areas in Figure 3-16 are where filters can be applied that

contribute to the Filter Context.

Filter Options
Let’s discuss the Filter options that can be applied to a PivotTable. These can be
found by right-clicking on any of the dimension members in the rows axis (or
columns if we had a columns axis) in the PivotTable. Each of these will be shown
shortly in an example. For now, right-click either Australia level member in the
row axis and choose Filter from the context menu. You will be presented with the
following options:

Keep Only Selected Items This option allows you to select any number of
members at any level and then only keep those members in the PivotTable.
Hide Selected Items This is the opposite of Keep Only Selected and allows
you to only hide what is selected.
Top 10 This allows you to keep the Top or Bottom “x” (not just 10) member
values. This is not just the measure that is in the PivotTable, but any measure
in the Data Model.
Label Filters This allows you to filter on the member labels.
Value Filters This allows you to filter on measure values and not just the
measure that is in the PivotTable, but any measure in the Data Model.

Filter data using the PivotTable
The first place that we will apply a filter is in the PivotTable itself. In this demo
we will use the Top 10 filters.

1. Open the \Chapter 3\CH03 Skill 3-1 Filtering.xlsx workbook and ensure
that the previous PivotTable is visible.

2. Place the cursor on the Australia member at the SalesTerritoryCountry level
(as opposed to the value that is at the SalesTerritoryRegion level) of the row
axis.

3. Right-click and in the context menu, choose Filter, and then navigate to the
submenu and choose Top 10.

4. This will open the Top 10 Filter (SalesTerritoryCountry) dialog box as
shown in Figure 3-17. Ensure that the dialog name does not have
SalesTerritoryRegion in brackets, as that means you chose Australia at the
incorrect level.

FIGURE 3-17 Top 10 Filter dialog box

5. In the dialog box you will have the following options that appear from left
to right in Figure 3-17:

In the first drop-down box, you can choose the following to decide
where to start the ranking:

Top
Bottom

In the second option box, you can choose a number to rank by.
Examples are:
Bottom 3 gives you the three worst performers for a metric.
Top 5 gives you the Top five performers.

In the third drop-down, your options are:

Items (default) Gives you the absolute number of items.
Percent Gives you a percentage of data relative to the data set size.
Sum Use to find the items that make up a specific sum.

6. Choose Top 2 Items by Sum of Freight and click OK.
7. You should only see the United States and Australia as in Figure 3-18.

FIGURE 3-18 Filter Icon in the PivotTable

8. Now clear the filter by clicking the Filter Symbol next to Row Labels in
the PivotTable, and then select Clear Filter From
“SalesTerritoryCountry” from the context menu.

MORE INFO TOP 10 FILTERS
See the following article for more information and examples around using the
Top 10 Filter http://www.contextures.com/excel-pivot-table-filters-top10.html.

Pivot Table Filter
These filters are added by moving one or more columns from the tables list in the
PivotTable Fields pane to the Filters area. Note the following:

If you have a field already in one of the other three areas (Rows, Columns,
or Values), then the field cannot be placed in the Filter area without
removing it from one of the other areas first.
The PivotTable filter can only be used against the PivotTable it belongs to. If
you want a filter to apply across multiple PivotTables, you will need to take
advantage of Slicers and Timelines.

To use the filter, click the drop-down box next to the column name to be
presented with a list of selectable items.

Slicer
Slicers provide highly visible buttons that you can click to filter data in your
PivotTables and PivotCharts. In addition, slicers also indicate the current filtering

http://www.contextures.com/excel-pivot-table-filters-top10.html

state, which makes it easy to understand exactly which filters are being applied.

MORE INFO SLICERS
See the following site for more information and example around using Slicers
https://support.office.com/en-us/article/use-slicers-to-filter-data-249f966b-
a9d5-4b0f-b31a-12651785d29d.

Timeline
Another option for filtering dates is to take advantage of a Timeline. A timeline
enables you to filter by times and easily zoom in on the periods you want to see.
Some notes are:

A timeline is only useable with Date data types
You can customize the slider to YEARS, QUARTERS, DAYS, and
MONTHS
It can be connected to multiple PivotTables and PivotCharts

Group and summarize data
You have already seen grouping and summarizing data from within a PivotTable
by taking advantage of nesting fields in the Rows and Columns axis of the
PivotTable. This is a manual way of grouping and summarizing data that is local
to the PivotTable. Also, if you did this without using DAX Measures (explicit
measures) then you will have created your own implicit measures that are
summarized.

To make this centralized, you can add custom columns to your Data Model
tables that can be used to group rows of data together. You can then use this
alongside Hierarchies to improve usability.

IMPORTANT GROUP OR UNGROUP DATA IN A PIVOTTABLE
If you are accustomed to using the Group and Ungroup functionality, as
found in traditional Excel, it is important to know that it does not work
against the Data Model.

Skill 3.2: Create and manage PivotCharts
PivotTables are often a starting point for understanding data, but for general end-
user consumption you often want to take advantage of using visuals for

https://support.office.com/en-us/article/use-slicers-to-filter-data-249f966b-a9d5-4b0f-b31a-12651785d29d

displaying data. Typically, when delivering solutions, you organize a collection of
related visuals in the form of scorecards or dashboards that are used to tell a story
for users in an “at a glance” fashion. If well designed and thought out, these
solutions enable users to digest massive amounts of data in a very short period.
Excel has many different visuals available, and you will review how to create and
customize the major visuals in the remainder of this section. The intention of this
book is not to make you an expert in how to design a well thought out and
designed dashboard, but to show you the most common visuals and how to use
and customize them as you prepare for the exam.

This section covers how to:

Select a chart type
Format PivotCharts
Format calculated measures
Filter data
Group and summarize data
Use slicers

Select a chart type
Fact-based decision making is the foundation upon which successful businesses
are built. Decision makers need to access data to help them make the right
decisions quickly or to spot issues with a process so that corrective actions can be
taken. The question on most decision makers’ minds is “Do I need to do
anything?”

As organizations grow, more and more data becomes available, so attempting
to synthesize it all in a timely fashion can become a challenge. This is where
visualizations that are properly selected and delivered can help provide that “at a
glance” view of business performance across massive amounts of information.
The Art and Science of Data Visualizations has taken off in recent years to help
tame the deluge of data that inundates most organizations.

Building a well thought out Data Model that is friendly to use takes a
considerable amount of time, but the efforts put in will pay dividends when you
and your users are actively using the model in day-to-day analytic situations. The
work done to Optimize the Data Model will make it easier to use, will help make
the output more consistent between different users, and can help speed up time to
delivery.

The Data Model only really becomes useful when you begin to consume the
data for decision making purposes. As discussed in the earlier parts of this
chapter, PivotTables are often the first stop when it comes to consuming data
from the Data Model. Many Excel users have long been comfortable using
PivotTables as their sole means of analysis. There comes a point, however, in the
Analytics lifecycle where users that need to track multiple metrics or KPIs are
better served by better means of visualizing their data. Tables of data and
mountains of reports are hard to navigate when trying to understand performance.
The current trend has been toward using the power of tools such as Excel to start
with highly summarized visuals and providing users the ability to drill to details
where needed. This is where Hierarchies that you would have built into the Data
Model become useful.

So, the starting point when it comes to dashboard design is to understand the
story that needs to be told with data while choosing appropriate visualizations
arranged in an intuitive manner. It is beyond the scope of this book to discuss how
to design well thought out dashboards that provide an at-a-glance view of data
that is easily digestible and navigable, but it is worth pointing out its importance.
The goal is to provide consumers of your data products the ability to find answers
to questions themselves.

 EXAM TIP
Be prepared to answer some basic questions on the exam around what visuals
are appropriate given a set of circumstances. This will often come in the form of
a small case study that describes a user’s requirements. In this book we will
describe the key visuals that are available in Excel, when they are appropriate to
use, and how to configure them for use.

When building visualizations, is it is worth stepping back to see the big picture
before selecting appropriate visualizations for what is being measured. There are
four basic presentation types that you can use to present your data:

Comparison
Composition
Distribution
Relationship

Unless you are performing Data Science activities, you will primarily use the
first two types in this list. In addition, Trending is something that is often broken
into its own category as aspects of trending overlay both Comparison and
Composition types.

For purposes of the exam, it is more important to get to an appropriate chart
type because the specific categories are not likely to be tested. They are provided
here to frame your thinking around the selection process.

Below are a few questions that you may ask yourself to help guide you toward
selecting a proper visualization for your needs.

1. Are you trying to compare values? The following charts are useful for
comparing one or many categories of data, as they can enable you to identify
low and high points in the data:

Column
Bar
Line

2. Do you want to show the composition of something? The following charts
are useful for showing how individual parts make up the whole:

Pie
Bar and variants of Bar
Stacked Column
Waterfall

3. Are you interested in analyzing trends? The following charts are useful if
you want to know more about performance over time:

Line and variants of Line
Column and variants of column

4. Are you trying to understand the distribution of your data? The
following Distribution-based charts are used to highlight outliers, display
normal tendency, and show the range of data in your data set:

Column
Bar

5. Do you want to better understand the relationship between value sets?
The following charts are useful for showing how one variable relates to one
or more different variables:

Scatter Plot
Bubble
Line and variants of line

MORE INFO RESOURCES TO HELP GUIDE APPROPRIATE
VISUAL SELECTION
The following site has a tool called The Chart Chooser, which will help guide
you toward an appropriate visual selection
https://extremepresentation.com/tools/. In addition to this, Juice Analytics has
an online chart chooser that uses the above flow to help you choose an
appropriate chart. It can be found at
http://labs.juiceanalytics.com/chartchooser/.

Excel has the following chart groupings. These chart types can use the Data
Model or a PivotTable directly as a source.

Column
Line
Pie
Bar
Area
Surface
Radar
Combo

The following chart groupings cannot use the Data Model or a PivotTable
directly as a source. To create these visuals, if you are using the Data Model as
your primary source, you first need to create PivotTables and then convert them
to Cube Functions or load the data to a traditional Excel table.

Scatter
Map
Stock
Funnel

The following chart groupings are new in Office 2016 and cannot use the Data
Model or a PivotTable directly as a source.

Treemap

https://extremepresentation.com/tools/
http://labs.juiceanalytics.com/chartchooser/

Sunburst
Histogram
Pareto
Box and Whisker
Waterfall

MORE INFO SIX NEW VISUALS IN OFFICE 2016
The six new charts types help you visualize common financial, statistical, and
hierarchical data. You can learn more about these at the following location
https://www.makeuseof.com/tag/new-excel-charts/.

Column
A Column Chart typically displays categories along the horizontal (category) axis
and values along the vertical (value) axis. They are good for comparison-based
analysis and are well suited if you have any negative category values, since
negative values are often associated with having a downward direction. Each of
the seven charts are shown in Figure 3-19 and Figure 3-20.

Clustered Column and 3D Clustered Column
Stacked Column and 3D Stacked Column
100% Stacked Column and 3D 100% Stacked
3D Column

https://www.makeuseof.com/tag/new-excel-charts/

FIGURE 3-19 2D Bar Charts

FIGURE 3-20 3D Bar Charts

Line
In a line Chart, category data is distributed evenly across the horizontal axis, and
value data is distributed evenly across the vertical axis. Line Charts are good for
showing continuous data over time. The charts that have markers are the same as

the line charts shown in Figure 3-21 except for the fact that data point markers
would be shown on the visual. Marker Charts are not separately shown but the
only difference between each is that markers will show up on the visuals for each
data point. Excel has the following seven chart styles as shown in Figure 3-21.

Line and Line with Markers
Stacked Line and Stacked Line with Markers
100% Stacked Column and 100% Stacked Column with Markers
3D Line

FIGURE 3-21 Line Charts

Pie and Doughnut
Pie Charts show the size of items in one data series, and the data points are shown
as a percentage of the whole pie. There are five variants of the Pie Chart that also
include the Doughnut. Figure 3-22 only shows the Pie and Doughnut Charts.

Pie and 3D Pie
Pie of Pie
Bar of Pie
Doughnut

FIGURE 3-22 Pie and Doughnut Charts

Bar
There are six types of Bar Charts available in Excel. They are a good way to
present data with long labels that would be hard to display below a vertical bar.
They also work well if you are trying to display many categories on the category
axis. The three 2D versions of the charts are shown in Figure 3-23.

Clustered Bar and 3D Clustered Bar
Stacked Bar and 3D Stacked Bar
100% Stacked Bar and 3D 100% Stacked Bar

FIGURE 3-23 Bar Charts

Combo

Combo Charts enable you to combine two or more chart types to make
relationships in your data easy to understand. You can combine charts from the
groupings of Column, Bar, Line, and Area into a combo chart. You are also able
to define a secondary axis, which is useful when plotting data sets with differing
scales, such as we did with the chart labeled Clustered Column-Line on
Secondary Axis in Figure 3-24. The three charts that are shown in Figure 3-24
are generally your starting point when building a Combo Chart. If any
customizations are made to one of these visuals, Excel switches the chart type to
a Custom Combination, which then allows you to make further customizations.
The following four combo chart types are available:

Clustered Column-Line
Clustered Column-Line on Secondary Axis
Stacked Area-Clustered Column
Custom Combination

FIGURE 3-24 Combo Charts

Area
Area Charts are useful for visualizing time-series relationships (see Figure 3-25).
Unlike line charts, they also visually represent volume by emphasizing the area
with color or shading in the area between the Axis. Stacked Area Charts show the
trend of the contribution of each value over time or other category data, and

100% Stacked Area Charts show the percentage trend that each value contributes
over a category such as time. There are six different chart types that fall into this
category in Excel:

Area and 3D Area
Stacked Area and 3D Stacked Area
100% Stacked Area and 3D 100% Stacked Area

FIGURE 3-25 Area Charts

Scatter and Bubble
Scatter Plots are like line graphs (see Figure 3-26). A line graph uses a line on the
X-Y axis to plot continuous data, while a scatter plot uses markers to represent
individual data points. Scatter Plots are useful if you want to see how two
variables are related to each other. There are seven different styles of Scatter Plots
in Excel:

Scatter
Scatter with Smooth Lines and Markers
Scatter with Smooth Lines
Scatter with Straight Lines and Markers
Scatter with Straight Lines

Bubble and 3D Bubble

FIGURE 3-26 Scatter Plot

Stock
As the name implies, Stock Charts can show fluctuations in stock prices and other
data sets that have high-low variability that you want to visualize. There are four
different types of Stock charts:

High-low-close
Open-high-low-close
Volume-high-low-close
Volume-open-high-low-close

MORE INFO CREATE A STOCK CHART IN EXCEL
If you would like an example of how to create a stock chart in Excel, the
following resource has some good demos
https://www.extendoffice.com/documents/excel/2138-excel-create-stock-
chart.html.

Map

https://www.extendoffice.com/documents/excel/2138-excel-create-stock-chart.html

Map Charts are useful when you want to plot data on a map to enhance the
understanding of a data set across regionality. It is important to have geographical
attributes in your data sets, as they are needed to help draw out the map
visualization. Figure 3-27 contains a map of the Adventure Works sales across all
time. Notice that the default map as created here varies; the color shades go from
darkest to lightest, where the highest sales are shown using the darkest colors.
This helps to further emphasize patterns in the data.

FIGURE 3-27 Map Chart

MORE INFO FORMAT A MAP CHART
There is quite a bit that you can do with a Map Chart to customize and
emphasize data points. The following site has some good examples and
details on the things you can do: https://support.office.com/en-
us/article/format-a-map-chart-2c744937-a1cc-48f7-bc5e-776497343a29.

Radar
As defined by Wikipedia, a Radar Chart is “a graphical method of displaying
multivariate data in the form of a two-dimensional chart of three or more
quantitative variables represented on axes starting from the same point.” In Figure
3-28, we display Total Profit and Total Sales across the Accessories Product
Subcategory.

https://support.office.com/en-us/article/format-a-map-chart-2c744937-a1cc-48f7-bc5e-776497343a29

FIGURE 3-28 Radar Chart

MORE INFO RADAR CHART
For more information on how and when to use a Radar Chart, see the
following resource: https://www.fusioncharts.com/chart-primers/radar-chart/.
See the following site for an example on how to create one in Excel:
https://www.extendoffice.com/documents/excel/2135-excel-create-radar-
chart.html.

Funnel
Funnel Charts are typically used to show multiple stages in a process, such as
movement through a sales pipeline or a registration process for a school. They use
horizontal bars that are arranged in the same order that a process flows, to show
progression though the process. They are also useful for displaying data across
categories as well, since the bars are sized relative to each other on display. In
Figure 3-29 we are displaying the ranked Total Sales of the Accessories Product
Subcategory.

https://www.fusioncharts.com/chart-primers/radar-chart/
https://www.extendoffice.com/documents/excel/2135-excel-create-radar-chart.html

FIGURE 3-29 Funnel Chart

MORE INFO FUNNEL CHARTS
For more information on how to create and format a funnel chart, see the
following resource: https://support.office.com/en-us/article/create-a-funnel-
chart-ba21bcba-f325-4d9f-93df-97074589a70e.

Treemap
A Treemap is a Hierarchical Chart that is useful for comparing parts to a whole,
or when several columns of a category form a hierarchy. It provides an easy way
to compare different levels of categorization. It displays categories by color and
proximity and can display lots of data easily.

Remember that this visual cannot be sourced directly though the data model. If
you try, you will see a message that says the following.

You can’t create this chart type with data inside a PivotTable. Please select a
different chart type or copy the data outside of the PivotTable.

To solve this, we will first create a PivotTable and then will convert the
PivotTable to Cube Function calls. Once we have the data in this format, you will
build the PivotChart off that data set. Let’s create a demo around building out the
Treemap by performing the following steps:

https://support.office.com/en-us/article/create-a-funnel-chart-ba21bcba-f325-4d9f-93df-97074589a70e

1. Open the \Chapter 3\CH03 Skill 3-3 PivotChart Demo.xlsx workbook.
2. From Excel > click the Insert tab > Tables > PivotTable.
3. In the Create PivotTable dialog, in the Choose the data that you want to

analyze, Use this workbook’s Data Model, and then in the Choose where
you want the PivotTable to be placed, choose New Worksheet. Click OK.

4. In the PivotTable Fields pane, do the following:

A. Drag Total Sales from the InternetSales table into the Values area.
B. Right-Click on the SalesTerritoryGroup in the SalesTerritory table

and choose Add to Rows Labels on the context menu. Do the same for
SalesTerritoryCountry as well. Once complete, ensure that
SalesTerritoryCountry is nested under the SalesTeritoryGroup. Note:
Do not use the hierarchy for this exercise but the field itself which is
under the More Fields folder.

5. At this point, your PivotTable should look like Figure 3-30.

FIGURE 3-30 Treemap PivotTable

6. We now need to change the Layout of the PivotTable so that the data is in
the necessary state to support the visual. With the cursor in the PivotTable,
navigate to the Design tab, Layout group, Report Layout, and click Show
in Tabular Form.

7. Now make the data labels repeat down the rows by navigating to the Design
tab > Layout group > Report Layout > click Repeat All Item Labels.

8. Remove the Subtotals by right-clicking one of the subtotal labels in the
PivotTable and choose Field Settings from the context menu. On the Field
Settings dialog, ensure the Subtotals & Filters tab has focus and then under
Subtotals, choose None.

9. Remove the Grand Totals by navigating to Cube formulas so that it can be
used as the source for the Treemap. For this, navigate to Design > Layout >
Grand Totals > click Off for Rows and Columns.

10. Now insert a Slicer so that you can interact with the data. To do this, ensure
that the cursor is inside the PivotTable and the navigate to Insert > Filters >
click Slicer to open the Insert Slicers dialog. Note that since we said to
insert the slicer while we were in the PivotTable, a few things were done for
us that we may need to otherwise do manually. First, Excel knew to base the
slicer on the Data Model. If you had done this operation outside of the
PivotTable, you would have been asked what source to use for the slicer.
Secondly, Excel knew to associate the slicer to the PivotTable, which is what
signals the slicer values to be passed to the PivotTable when you interact
with the slicer.

11. From within the Insert Slicer dialog, ensure that the All tab is open and
then in the Customer table, check the Gender field to create the slicer
based on this. Click OK when complete.

12. Finally, we need to convert the PivotTable to Cube Functions since the
Treemap PivotChart type cannot use a PivotTable. To do this, navigate to
Analyze > Calculations > OLAP Tools > and click Convert to Formulas.

13. At this point your data worksheet should look like Figure 3-31. Notice that it
is no longer a PivotTable, but has been converted to a series of Cube
Function calls that get the equivalent data to the PivotTable.

FIGURE 3-31 Data formatted for Treemap consumption

14. Use the newly converted set of data as the source for the Treemap chart. To
do this, highlight the rows and columns in the worksheet in Figure 3-30,
including the column headers.

15. Next navigate to Insert tab, Charts group, Insert Hierarchy Chart
command and then click Treemap in the drop-down.

16. You should then be presented with the default Treemap chart as in Figure 3-
32. Notice that this screenshot was taken immediately after you clicked
Treemap so that data points in the table are still highlighted.

FIGURE 3-32 Default Treemap Chart

17. Interact with the slicer values and watch the chart and data table change with
the different filter values.

18. Save the file, as you will use what you have done so far to build a Sunburst
Chart next. You will also come back to the Treemap in a later demo to
format it.

MORE INFO CREATING TREEMAPS
For more information on creating Treemap visuals see the following article
https://support.office.com/en-us/article/create-a-treemap-chart-in-office-
2016-dfe86d28-a610-4ef5-9b30-362d5c624b68.

 EXAM TIP
Knowledge of MDX syntax is not examinable outside of what is needed when
working with the CUBEFUNCTIONS. Some knowledge is helpful if you find
yourself getting into more advanced reporting using the Data Model,
PivotTables, and PivotCharts.

Sunburst
The Sunburst Chart is useful for displaying hierarchical data. Each level of the
hierarchy is represented by one ring or circle with the innermost circle as the top
of the hierarchy. A Sunburst Chart with only one level of categories resembles a
Doughnut Chart. However, a Sunburst Chart with multiple levels of categories
shows how the outer rings relate to the inner rings. The Sunburst Chart is most
effective at showing how one ring is broken into its contributing pieces.

Even though the data for the previous example may not be the best for display
in a Sunburst Chart, let’s use the data as a matter of convenience to show creating
an additional visual.

1. Open the \Chapter 3\CH03 Skill 3-3 PivotChart Demo.xlsx workbook that
you previously saved.

2. Use the newly converted set of data as the source for the Sunburst Chart. To
do this, highlight the rows and columns in the worksheet in Figure 3-31,
including the column headers.

3. Next, navigate to Insert tab > Charts group > Insert Hierarchy Chart
command and then click Sunburst in the drop-down.

https://support.office.com/en-us/article/create-a-treemap-chart-in-office-2016-dfe86d28-a610-4ef5-9b30-362d5c624b68

4. You should be presented with a Sunburst Chart as shown in Figure 3-33.
Take note of how the chart is effective at showing how one ring is broken
into its contributing pieces.

FIGURE 3-33 Sunburst Chart

5. Interact with the slicer values and watch the chart and data table change with
the different filter values.

6. Save the file, as will you use what you have done so far. You will also come
back to the Treemap in a later demo to format it.

MORE INFO CREATING SUNBURST VISUALS
For more information on creating Sunburst visuals see the following article
https://support.office.com/en-us/article/create-a-sunburst-chart-in-office-
2016-4a127977-62cd-4c11-b8c7-65b84a358e0c.

Histogram
Histograms show distributions of data. They are used to plot data with ranges of
the data grouped into bins or intervals. Often Histograms are described as bar
charts, which is a mistake. Bar charts are used to plot categorical data and are
used to compare values across categories.

Let’s look at creating Histogram by looking at how our customer base is
distributed across commute distance. The Customer has a Bin already included in
the data set, which is useful. All that we will do is perform a count in the
CustomerAlternateKey so that we can see the number of customers in each bin.
To do this, follow these steps:

https://support.office.com/en-us/article/create-a-sunburst-chart-in-office-2016-4a127977-62cd-4c11-b8c7-65b84a358e0c

1. Open the \Chapter 3\CH03 Skill 3-3 PivotChart Demo.xlsx workbook.
2. Navigate to the Histogram worksheet. Once this worksheet is open, you will

notice that a data set has already been created for this demo to save you the
steps of data preparation.

3. Highlight the rows and columns in the worksheet, including the column
headers.

4. Next navigate to Insert tab > Charts group > Insert Statistic Chart
command, and then click Histogram in the drop-down.

5. You should then be presented with a new Histogram chart as shown in
Figure 3-34.

FIGURE 3-34 Histogram

6. This is a good start, but it is not quite what we had intended. We wanted to
see the distribution across the Bins that we had in our data set, which is what
we will see in Figure 3-34 after we configure the next step.

7. To get your Histogram to look like this, do the following steps. Highlight the
x-axis as shows by Callout Bubble 1 on Figure 3-35 and then double-click
it. Then in the context menu, select Format Axis. When the Format Axis
pane appears, ensure that Axis Options (Callout Bubble 2) is highlighted,
and choose By Category in the Bins options, which is Callout Bubble 3.
This will put the counts in the appropriate bins.

FIGURE 3-35 Histogram

For completeness, you have the following options for configuring bins:

By Category You specify the categories for the bins.
Automatic Excel will automatically determine the number of bins.
Bin Width Use this to specify the range of each bin.
Number Of Bins Use this option if you know the number of bins you
want to show in the chart.
Overflow Bin Use this to define an upper limit value for bins. Values
that are above this number are put into another bin.
Underflow Bin Use this to define a lower limit value for bins. Values
that are above this number are put into another bin.

MORE INFO CREATING HISTOGRAM AND PARETO CHARTS
For more information on creating histogram charts, please see the following
sites: https://support.office.com/en-us/article/create-a-histogram-in-excel-
85680173-064b-4024-b39d-80f17ff2f4e8 and https://support.office.com/en-
us/article/create-a-pareto-chart-a1512496-6dba-4743-9ab1-df5012972856.

Box and Whisker
Box and Whisker plots are used to compare distributions because the center,
spread, and overall range are immediately apparent. In contrast to a Histogram, it
does not show a distribution in as much detail, but is useful for indicating whether
a distribution is skewed or not.

https://support.office.com/en-us/article/create-a-histogram-in-excel-85680173-064b-4024-b39d-80f17ff2f4e8
https://support.office.com/en-us/article/create-a-pareto-chart-a1512496-6dba-4743-9ab1-df5012972856

MORE INFO CREATING BOX & WHISKER CHARTS
For more information on creating Box & Whisker charts, please see the
following site https://support.office.com/en-us/article/create-a-box-and-
whisker-chart-62f4219f-db4b-4754-aca8-4743f6190f0d.

Waterfall
Waterfall Charts are useful for visualizing positive and negative values and how
they impact a subtotal or total. They are often used when visualizing financial
statements data such as net income or profit, and how accounts, business units, or
divisions impact these overall values. Figure 3-36 demonstrates this.

FIGURE 3-36 Waterfall Chart

MORE INFO CREATING WATERFALL CHARTS
For more information on creating Waterfall Charts, please see the following
site https://support.office.com/en-us/article/create-a-waterfall-chart-in-office-
2016-8de1ece4-ff21-4d37-acd7-546f5527f185.

Format PivotCharts
When building PivotCharts, you typically start out by getting the PivotChart
functioning properly from a data perspective. Once you have it displaying the
data that you want, and perhaps even alongside some other visuals, the time will
come to give your PivotChart a professional look and feel.

https://support.office.com/en-us/article/create-a-box-and-whisker-chart-62f4219f-db4b-4754-aca8-4743f6190f0d
https://support.office.com/en-us/article/create-a-waterfall-chart-in-office-2016-8de1ece4-ff21-4d37-acd7-546f5527f185

Each of the Chart Types have many elements in common, such as Titles, Axis
Labels, and Legends. There are some elements that are unique to each visual. In
this section, we will focus on the common things that can be done to format your
PivotCharts to make them look visually appealing. There are many formatting
options, and it is beyond the scope of the exam to go into details around all
options.

The first thing that you need to be familiar with is the Format Selection pane.
There are numerous ways to have it appear. In Figure 3-37, the chart area is
highlighted and then we navigated to Format, Current Selection, and clicked
Format Selection, which made the Format Chart Area pane appear as shown.

FIGURE 3-37 Pie PivotChart with Format Chart Area visible

In the Current Selection group, as shown in Figure 3-38, you will notice the
drop-down with the word Chart Area selected.

FIGURE 3-38 Current Selection group

If you click the Chart Elements drop-down box, you will see all the chart
elements for a Pie Chart as is shown in Figure 3-39. You will know what can be
formatted once you click on an element and then see what is available in the
Format Selection pane.

FIGURE 3-39 Pie Chart customizable chart elements

As you have seen, when you have a PivotChart in focus, you will get the
following tabs that show up in the Ribbon under PivotChart Tools.

Analyze
Design
Format

The tabs that we are concerned about in this Section are the Design and Format
tabs. In the Design tab, as shown in Figure 3-40, you will notice the following
options, which are used to change the styles of your PivotChart.

Add Chart Element Lets you add and modify valid elements for a given
Chart Type.
Quick Layout Has predefined styles for you to change the overall layout of
your chart.
Change Colors Allows you to customize your colors and styles.
Gallery Allows you to choose from many predefined styles that are applied
to all the elements of a given visual.
Change Chart Type From here you can change your chart to many different
types.

FIGURE 3-40 PivotChart Tools Design tab

In the Format tab, as shown in Figure 3-41, you will notice the following
options, which are used to change the format of your PivotChart. Below are the
most commonly used commands on this tab.

Chart Elements As mentioned earlier, this is where you can pick chart
elements from the drop-down.
Format Selection Opens the Format Selection pane that has formatting
options for each element.
Reset to Match Style Clears the custom formatting of the selected chart
element back to the overall style applied to the chart. This helps to ensure
that the selected chart elements match the overall theme of the document.
WordArt Styles Gallery Customizes fonts on the visual.
Height Adjusts the height of the selected chart element, if applicable.
Width Adjusts the height of the selected chart element, if applicable.

FIGURE 3-41 PivotChart Tools Format tab

Listed below are some of the Chart Elements that can be formatted:

Chart Area
Chart Title
Axis Title
Axis
Plot Area
Data Labels
Data Series
Data Point
Legend

Formatting a chart can be a time-consuming task as you work to get every
aspect of the design and format just right. So, once you have your chart formatted

the way you like, you may find yourself wanting to use a similar set of formatting
styles on other charts. To do this, you can save your chart as a template for reuse
in other workbooks.

MORE INFO SAVE A CUSTOM CHART AS A TEMPLATE
For more information on how to save a custom chart as a template, visit the
following site https://support.office.com/en-us/article/save-a-custom-chart-
as-a-template-259a5f9d-a9ec-4b3f-94b6-9f5e55187f2a.

Filter data
Filtering data can be done on the PivotChart or it can be done using an external
object such as a Slicer or a Timeline. This is done in the same manner as we did
with PivotTables. You have already seen Slicers and Timelines, so let’s focus the
discussion around filtering PivotCharts to the filters on the chart itself. Figure 3-
42 shows the three filters that are available to be applied to the PivotChart.

FIGURE 3-42 PivotChart with filters

Callout Bubble 1 is the CalendarYear filter that has been designated in the
Filter area of the PivotChart Fields pane. This filter can only choose specific
values from the list of valid members. Callout Bubble 2 has the filter options that
can be applied to the Axis (Categories) and Callout Bubble 3 is for the Legend
(Series). Both Callout Bubbles 2 and 3 allow for extended Filtering on Labels and
Values in the chart.

https://support.office.com/en-us/article/save-a-custom-chart-as-a-template-259a5f9d-a9ec-4b3f-94b6-9f5e55187f2a

Skill 3.3: Interact with Power BI
Excel has arguably been one of the top, if not the top, BI tool for many years.
However, Excel has several shortcomings that needed to be addressed. Some of
the largest pain points with Excel have been sharing, collaborating, and
maintaining version control of an Excel workbook. For years, users have been
creating wonderful insights that they have had a tough time sharing in a
consistent and secure manner.

In recent years, Power BI has gained in popularity, largely in part due to its
ability to overcome the sharing and collaboration barrier. In conjunction with the
evolution of the Office 365 and Azure suite of products, we now have many
options that allow for easier centralization of data and sharing of those data
products in the form of the Data Model or Excel Visualizations.

This section covers how to:

Import Excel data from Power BI
Manipulate Excel data in Power BI

NOTE POWER BI ACCOUNT
To do the demos in this section you will need to have a powerbi.com account.
If you do not have one and want to create one, visit
https://powerbi.microsoft.com/en-us/get-started/. If you are interested in
learning more about Power BI outside of the exam context, the following
location contains an excellent starting point: https://docs.microsoft.com/en-
us/power-bi/guided-learning/.

Power BI overview
Before we dive into the options that you have for interactions between Power BI
and Excel, we will do a quick overview of Power BI and its components.

MORE INFO POWER BI LICENSING
For more information on Power BI licensing models, features, and cost, visit
https://powerbi.microsoft.com/en-us/pricing/ and
https://docs.microsoft.com/en-us/power-bi/service-free-vs-pro.

https://powerbi.microsoft.com/en-us/get-started/
https://docs.microsoft.com/en-us/power-bi/guided-learning/
https://powerbi.microsoft.com/en-us/pricing/
https://docs.microsoft.com/en-us/power-bi/service-free-vs-pro

Power BI desktop
Power BI desktop is the tool where most of the development work to create

Power BI models and visualization is done. The tool has capabilities to connect to
data sources, load, cleanse, and model data for end-user consumption. It then
allows you to build visuals and then consume this content in the Power BI
service. Fundamentally it does many of the same things that you have already
done in Excel using PivotTable and PivotCharts, using the Excel data model and
Get & Transform data. Power BI originally launched as part of Office 365 back in
July 2013 and in July 2015 it became its own product that was disconnected
(from a product development lifecycle) from the Office suite of products.

It comes in two versions: Power BI Desktop and Power BI Desktop optimized
for Power BI Report Server. The latter is meant to be used against Power BI
Report server.

MORE INFO POWER BI REPORT SERVER
Power BI Report Server and it components are not testable on the exam, but
are included here for completeness in the Power BI product overview
https://docs.microsoft.com/en-us/power-bi/report-server/get-started.

Power BI Service
The Power BI Service is where content that is developed using Power BI Desktop
is published for more widespread sharing and collaboration using the Internet.
From here it can be accessed anytime, anywhere, by any device. It is also possible
to import data using the service and then build reports from it, but the
functionality is not nearly as rich as the desktop tools. The Power BI Service
interface is shown in Figure 3-43.

https://docs.microsoft.com/en-us/power-bi/report-server/get-started

FIGURE 3-43 Power BI Service interface

The relevant parts of the service for purposes of this book are shown in the
following list. Note that each number in the list corresponds to a numbered
Callout Bubbles on Figure 3-43.

8. Import or Connect to Data We will be navigating to Files, Get to publish
data from Excel to the Power BI Service so that content can be shared using
this interface.

9. DASHBOARDS This is where Power BI Dashboards are housed and
managed once they are created.

10. REPORTS This where Power BI Reports are stored, managed, and created.
11. WORKBOOKS This is where any Excel workbooks that have been

published to the Power BI Service will be housed and managed.
12. DATASETS This is where Power BI stores datasets that are used to build

reports.

Power BI Mobile
Once content is published to or built in the Power BI Service, it is made available
almost instantaneously in Power BI Mobile. It allows you to securely access and
view live any dashboards and reports on any device, with native mobile BI apps
for Windows, iOS, and Android.

Power BI Embedded

Microsoft Power BI Embedded is targeted at application developers to use so that
they can embed fully interactive reports, dashboards, and tiles into applications
without the time and expense of building their own data visualizations and
controls from the ground-up. Power BI, on the other hand, is a software-as-a-
service analytics solution that gives organizations a single view of their most
critical business data.

MORE INFO POWER BI EMBEDDED
Power BI embedded is not testable on the exam, but is included here for
completeness in the Power BI product overview
https://docs.microsoft.com/en-us/power-bi/developer/embedded-faq.

Import Excel data from Power BI
There are multiple ways to get data and objects from Excel into Power BI. The
terminology differs depending if you’re using Excel or Power BI as the starting
point.

Publish from Excel
With Excel 2016, you can publish Excel workbooks to Power BI right from
Excel. This enables you to harness the power and skills you have with Excel and
then benefit from the interaction and distribution capabilities from within Power
BI. For years, one of the largest challenges with Excel has been how to share
workbooks while maintaining versions. With Office 365 and Power BI you now
have the capabilities to avoid what has traditionally been one of the largest
challenges.

You have two options for publishing to Power BI from within Excel and each
has differing outcomes. You can:

Upload your workbook to Power BI
Export your workbook data to Power BI

To get to the Publish location from within Excel, navigate to File, to >Publish
and you will see Figure 3-44.

https://docs.microsoft.com/en-us/power-bi/developer/embedded-faq

FIGURE 3-44 Excel Publish Interface

First Let’s look at what each option offers by first looking at the Upload Your
Workbook To Power BI option, which has the following functionality. As a
note, these functions are active once you publish:

Interact with your Excel workbook just as you would in Excel Online.
Pin selections from your workbook to Power BI dashboards.
Share your workbook or selected elements through Power BI.

There a few things that you need to be aware of before you publish:

Before you can publish to Power BI, your workbook must be saved locally,
in OneDrive for Business or on a SharePoint Online team site. If the file is
saved locally, only Excel 2016 with an Office 365 subscription will see the
experience to publish with local files. If you are using an Excel 2016
standalone installation, you will still have the Publish behavior, but this
requires that the Excel workbook be saved to OneDrive for Business or
SharePoint Online.
The account you use to sign in to Office, OneDrive for Business, and Power
BI must be the same account.
You cannot publish an empty workbook or a workbook that doesn’t have any
Power BI supported content.
You cannot publish encrypted or password-protected workbooks, or
workbooks with Information Protection Management.
Publishing to Power BI requires modern authentication be enabled (default).
If disabled, the Publish option is not available from the File menu.

If your Excel work book is stored on OneDrive for Business or on a SharePoint
Online team site, you will only be able to publish to your own Power BI
workspace per the below message in Figure 3-45.

FIGURE 3-45 File Location Message

If your Excel workbook is stored locally, you will able to Select Where You’d
Like To Publish To In Power BI. This is any workspace that you have
permissions for as shown in Figure 3-46. To generate this screenshot, simply
move the Excel file that you want to publish to your desktop.

FIGURE 3-46 Publish to Power BI via a local file

Let’s now publish a file to Power BI using the Upload option. To do this, perform
the following steps:

1. Open the file named \Chapter3\CH03 Skill 3-3 Power BI–Upload.xlsx. In
this demo, the file was stored in OneDrive for Business.

2. Observe that the file has the following characteristics:

It has a Data Model that has been populated using the Query Editor
It has an Excel Table named tblLetters on Sheet2
It has several reporting objects such as a Timeline, PivotCharts, and
PivotTables

3. Navigate to File > Publish > and then click Upload. Once you click
upload, you should see the status bar at the bottom of the screen as appears
in Figure 3-47.

FIGURE 3-47 Publish to Power BI status

4. Once the Publish is complete, Excel will display the message in Figure 3-48
below the Ribbon. Click the Go to Power BI button.

FIGURE 3-48 Publish to Power BI success message

5. In Power BI you should see the following, as in Figure 3-49. You will notice
that it is Excel Online and that the name of the workbook CH03 Skill 3-3
Power BI–Upload shows up under the WORKBOOKS area. Here are a
few important points:

The entire workbook has been published.
You cannot edit the workbook in Power BI.
You can edit it by clicking Edit and then choose to Edit in Excel
Online or Edit in Excel.
No data has been uploaded to Power BI because nothing shows up in
DATASETS. This means that the data is still in the Excel Data Model.
Any additional visuals need to be created in Excel.
If data changes in the workbook on OneDrive for Business, it can take
up to one hour for the changes to be reflected in Power BI.
You can Pin the visuals, including the PivotTable to a Dashboard.

FIGURE 3-49 Excel workbook content hosted in the Power BI Service

Let’s now publish a file to Power BI using the Export option. To do this,
perform the following steps:

1. Open the file named \Chapter3\CH03 Skill 3-3 Power BI – Export.xlsx. In
this demo, the file was stored in OneDrive for Business.

2. It has the same characteristics as the Upload file but was given a different
name to add clarity to the demo.

3. Navigate to File > Publish > and then click Export. Once you click upload,
you should see the status bar at the bottom of the screen appear as in Figure
3-47.

4. Once Publish is complete, Excel will display the message in Figure 3-48
below the Ribbon. Click the Go to Power BI button.

5. In the Power BI service, you will notice that this time the only the Data
Model tables have been imported in the DATASETS section as shown in
Figure 3-50.

Any supported data in tables and/or the Data Model are exported to a
new dataset in Power BI. Note that if you have Data Model data and
Excel tables, only the Data Model tables will come over. In our case,
the Excel table name tblLetters was not brought over. Had there been
no data model in the workbook, the table would have come over.
If you have Power View sheets, they are re-created as Power BI
Reports.

When you edit your workbook and save it in OneDrive for Business,
your changes are synchronized with the dataset in Power BI within an
hour. If you need it faster, you can Publish again.

FIGURE 3-50 Excel DATASET hosted in the Power BI Service

6. If you click on the Ellipses next to the CH03 Skill 3-3 Power BI–Export
dataset you will notice the following, as in Figure 3-51, which indicates
when the last data refresh occurred.

FIGURE 3-51 Last dataset refresh time

MORE INFO PUBLISH TO POWER BI FROM EXCEL 2016
For more information on how to Publish to Power BI from Excel 2016, visit
the following site https://docs.microsoft.com/en-us/power-bi/service-publish-
from-excel.

Import from Power BI
From within Power BI you can effectively perform the same action:

Import a workbook to Power BI (like Export within Excel)
Connect to the workbook to navigate its data and content (like Upload from
Excel)

As a note, My Workspace in Power BI was cleaned out completely so that we
can demo the same actions from above, but this time using Power BI as the
interface to bring in Excel content.

If your current Power BI screen does not look like Figure 3-52, you can click
Get Data in the bottom left of the Power BI interface as shown with Callout
Bubble 1, because this will show up in all Power BI screens. Once you have the
full screen as in Figure 3-52, navigate to Import or Connect to Data, and click
Get (Callout Bubble 2).

https://docs.microsoft.com/en-us/power-bi/service-publish-from-excel

FIGURE 3-52 Get Data from Excel using the Power BI Service

You are then presented with the following screen as in Figure 3-53. Here you
will see that Power BI allows you to bring files in from several other locations as
well.

FIGURE 3-53 Import or Connect to Files

When you select one of the options on Figure 3-53, you get the navigation
screen for OneDrive for Business. Here you navigate to the file locations (same as
where they were for Excel) and then click Connect. Once you have done this, you
will be presented with Figure 3-54, where you decide how you want to connect
your Excel workbook.

FIGURE 3-54 Choose how to connect to your Excel workbook dialog

From this point forward, you will end up with the same result as when we
published from Excel. Once again, if you choose to Import a workbook to Power
BI, it will function like Export within Excel. If you choose to Connect to the
workbook, it will function like Upload from Excel.

Power BI Publisher for Excel
Power BI publisher for Excel enables you to take snapshots of Excel objects such
as PivotTables and PivotCharts and pin them directly into Power BI.

You first need to download the Power BI publisher for Excel. The easiest way
to do this is to navigate to Power BI and click on the download icon in the upper
right part of the screen as in Figure 3-55. From here you will be taken to the
download site.

MORE INFO POWER BI PUBLISHER FOR EXCEL DOWNLOAD

To download the Power BI publisher for Excel, you can also navigate to
https://powerbi.microsoft.com/en-us/excel-dashboard-publisher/ and then
choose the correct bit version that needs to be installed.

FIGURE 3-55 Download location for Power BI publisher for Excel

Once you have done the install of the Power BI publisher for Excel, you will
have a new tab in Excel named Power BI, as shown in Figure 3-56.

FIGURE 3-56 Power BI Publisher for Excel tab

MORE INFO POWER BI PUBLISHER FOR EXCEL

https://powerbi.microsoft.com/en-us/excel-dashboard-publisher/

For more information and examples, see the following article:
https://docs.microsoft.com/en-us/power-bi/publisher-for-excel.

Manipulate Excel data in Power BI
Once your data is in Power BI, you can create Reports and build Dashboards as
you would if you were building Power BI objects off an existing Power BI model.
The tutorial that is in the MORE INFO reader aid below does an excellent job
explaining how to:

Get data
Start exploring your dataset
Continue the exploration with Q&A (natural language querying)

MORE INFO GETTING STARTED WITH THE POWER BI
SERVICE
For more information and examples on how to use the Power BI Service, see
the following article https://docs.microsoft.com/en-us/power-bi/service-get-
started.

Thought experiment
In this thought experiment, you will test your knowledge pertaining to visualizing
data. As a practice for the exam, eliminate answers that you know are incorrect
first as to narrow the smallest set of most correct answers first.

1. Which of the following is not an area in the PivotTable Fields pane?

A. Values
B. Slicers
C. Rows
D. Filters

2. You have a Data Model with one table in it, and data for a PivotTable you are
building is sourced exclusively from the Data Model. If the Data Model gets
its data from a SQL Server via the Query Editor, what sequence of steps needs
to happen to get refreshed into your PivotTable if you know that data at source
has changed? Assume that the Query Property named Refresh this connection
on Refresh All is checked. Choose all that are correct.

A. From the PivotTable Tools menu, click Refresh

https://docs.microsoft.com/en-us/power-bi/publisher-for-excel
https://docs.microsoft.com/en-us/power-bi/service-get-started

B. From the PivotTable Tools menu, click Refresh All
C. From the Query Editor, click Home, Query, Refresh All
D. All the above

3. Which set of steps will connect a slicer to a PivotTable? Assume one
PivotTable and Slicer are in the workbook. Choose all that apply.

A. With a cell in the PivotTable selected, choose Insert, Filters, Slicer
B. With a cell selected outside of the PivotTable, choose Insert, Filters, Slicer
C. With a cell selected outside of the PivotTable, choose Insert, Filters, Slicer.

Right-click on the Slicer and choose Report Connections from the context
menu and then associate it with the PivotTable

D. All the above

4. Which filter types can be connected to many PivotTables and PivotCharts?
Choose all that apply.

A. Slicer
B. Timeline
C. Dicer
D. Filter in the Filters area of a PivotTable

5. Which Filters are available when filtering on a member that is in the Rows of
Columns of a PivotTable? Choose all that apply.

A. Top 10
B. Label Filters
C. Value Filters
D. All the above

6. Which is not an available chart type in Excel?

A. Histogram
B. Combo
C. Radar
D. Card

7. Which chart type is best to illustrate comparisons among individual items
where there are many individual items? Choose the BEST answers.

A. Bar
B. Pie

C. Column
D. Waterfall

8. Which chart types cannot connect directly to data that is house in the Data
Model?

A. Pie
B. Bar
C. Funnel
D. Waterfall

Thought experiment answers
This section contains the solutions to the thought experiment.

1. Answer B: The Slicer is a separate object from the PivotTable.
2. Answers A and B: The Refresh preview in the Query Editor only refreshes

the data preview for the Query Editor and does not load the data to the Data
Model.

3. Answers A and C: Step B is incomplete. You would need to go through the
steps of choosing where to source the Slicer from and then you would need to
connect it to the PivotTable

4. Answers A and B: A Dicer does not exist. The Filter in the Filters area of a
PivotTable is local to one PivotTable.

5. Answer D: All these filter types are available.
6. Answer D: There is no Card Chart type in Excel.
7. Answers A and C: Pie Charts would become too difficult to interpret with

many individual items. Waterfall Charts are useful for understanding how an
initial value is affected by a series of positive and negative values, such as in
Financial Statements.

8. Answers C and D: The Funnel Chart and Waterfall Chart cannot connect to
data directly in the Data Model.

Chapter summary
PivotTables are a great way to start analysis. They summarize data into a
grid format as defined by the PivotTable Fields pane.
It is a good idea to give your PivotTable a name once it is created. This is
useful as most reporting solutions end up with multiple reporting objects;
this helps keep them organized.

With a Data Model that has lots of data, you can use the Defer Layout
Update to defer data updates as you define a PivotTable.
You have options to format aspects of your PivotTable locally or in the Data
Model. Making changes to the Data Model allows them to be available to all
PivotTables.
The default Report Layout is Compact. There are two other Report Layout
types:

Tabular
Outline

Measures that are created in the PivotTable are known as Implicit Measures
and are local to the PivotTable they are created in. To create globally
available measures, you will create Explicit Measures that become part of
the Data Model.
Grand Totals can be removed from PivotTables in the following ways:

Off for Rows and Columns
On for Rows and Columns
On for Rows Only
On for Columns Only

Subtotals can be configured in the following ways:

Do Not Show Subtotals
Show all Subtotals at Bottom of Group
Show all Subtotals at Top of Group

Blank Rows can be added to your PivotTables between groupings to help
add clarity to your PivotTables.
Refreshing data in your PivotTables can be done in several ways:

Manually for each PivotTable
Manually for all PivotTables
Automatically when opening the file

Values in a PivotTable can be summarized and formatted locally to a
PivotTable using the Value Field Settings set of properties. These override
any formatting that has been done in the Data Model.
When done building a Data Model, it should be optimized by doing the
following:

Remove Columns from Data Mode that are not useful in analysis
Hide Tables and Columns that are not useful in analysis but are needed
in the Data Model
Naming Conventions should be intuitive for tables and columns
Table and Column Descriptions should be added to each
Data Types - choose the correct data type for columns
Columns Formats should be set to appropriate formats for the column
Create Explicit Measures
Column Sorting
Data Categorization, which helps reporting tools better interpret data
values
Set Summarize By Property, which applies default summary method for
a column

Filtering data the is displayed in your PivotTable can be done in the
following locations:

In the PivotTable itself
By adding a PivotTable Filter
By adding a Slicer and connecting it to the PivotTable
By adding a Timeline and connecting it to the PivotTable

Excel Has the following chart groupings. These chart type can use the Data
Model or a PivotTable directly as a source:

Column
Line
Pie
Bar
Area
Surface
Radar
Combo

These chart groupings cannot use the Data Model or a PivotTable directly as
a source:

Scatter
Map

Stock
Funnel

The following chart groupings are new in Office 2016 and cannot use the
Data Model or a PivotTable directly as a source:

Treemap
Sunburst
Histogram
Box and Whisker
Waterfall

When you upload a workbook to Power BI using the Excel Publish to Power
BI, you can:

Interact with your Excel workbook just as you would in Excel Online
Pin selections from your workbook to Power BI dashboards
Share your workbook or selected elements through Power BI

When you Export workbook data to Power BI:

Excel table data comes as long as there is no Data Model. If a data
model is present, only it is exported into a Power BI dataset
You can create Power BI reports and dashboards from your dataset

With Power BI Publisher for Excel, you can take snapshots of PivotTables,
charts, and ranges and pin them to dashboards in Power BI.

Specifically, you can select:

A range of cells from a sheet or table
PivotTables
PivotChart
Illustrations and images
Text

You cannot select:

3D Maps
Power View visualizations

Index

A

Access
connecting to 12

actual-to-target values 162
actual value calculation 160
Add Conditional Column dialog box 72–73
Advanced Editor 45, 49
AdventureWorks2016 Database 5
aggregate functions 126–127
ALL 147
Analysis Services 13–17, 141
AND 129
Append transformation 55–57
area charts 206–207
arithmetic operators 123
automatic relationships 104–105
AVERAGE 126
AVERAGEX 128
Azure

data sources, connecting to 24–26
subscription 24

Azure Data Lake 25–27
Azure SQL

connecting to 24
Azure SQL Data Warehouse

connecting to 24

B

bar charts 202–203, 205
Blank Query 30
box and whisker plots 216–217
bubble charts 207
business hierarchies 156–157
business rules

applying 71

C

CALCULATE 135–136, 147
calculated columns 90, 116–118, 128, 158
Calculation Area 89
CALENDAR 130
CALENDARAUTO 130
cardinality 101, 102
categorization 113, 190
charts. See PivotCharts
child functions 140
Clear All command 179
column charts 202–203
columns

adding 43–44, 56
calculated 90, 116–118, 128, 158
conditional 72–73
extracting values from existing 47–48
formatting 112–115
formatting, in PivotTables 183–184
from examples 71
from source systems 90
hiding 110–111, 187–188
index 73
merging 48–49
rearranging 42–43, 61–62

related 101
relationship 105
removing 46–47
renaming 44–45, 189
Sort By 111–112
sorting 190
splitting 66–67

Combine Files tranform 53–55
combo charts 205–206
Compact Form

for PivotTables 178
comparison operators 123
composite keys 103
CONCATENATE 132
CONCATENATEX 132
conditional columns 72–74
CONTAINS 134
COUNT 127
COUNTA 127
COUNTAX 128
COUNTBLANK 127
counting functions 127
COUNTROW 127
COUNTX 128
credentials 70
CSV data sources

connecting to 19–20
cube functions 150–152, 212
CUBEKPIMEMBER 150
CUBEMEMBER 150, 151–152
CUBEMEMBERPROPERTY 150
CUBERANKEDMEMBER 150
CUBESET 150
CUBESETCOUNT 150

CUBEVALUE 150, 151–152
Custom Column dialog 56
custom functions

invoking 71–72

D

data
aggregating 3
business rules for 71–73
changing format to support visualization 73–74
cleansing 79–83
compression 89
encryption 8
filtering 74–79, 193–198, 220–221
for decision making 199
formatting 79
grouping 198
importing 2–32

from Excel workbooks 27
from Power BI 224–231
to support basic transformations 33–37

incomplete, managing 80–81
loading into Data Models 68–69
manipulation, in Power BI 232
merging 57–61
parameters 76–79
pivoting 83
pre-aggregated 74–75
presenting for end users. See data visualizations
Privacy Levels 30–32
received as report 81–83
summarizing 198
traditional integration of 99

unpivoting 81–83
data analysis

Analysis Services 13–17
in Excel 3–4

Data Analysis Expressions (DAX) 100, 109, 116
basics of 117–126
calculated columns 117–118
data types 122–123
evaluation contexts 123–126, 128
formulas 116–141

aggregate functions 126–127
counting functions 127
date and time functions 130–132
filter functions 134–137
information functions 134
iterators 128
logical functions 129–130
other functions 141
parent and child functions 140
statistical, math, and trig functions 139–140
text functions 132–133
time intelligence functions 138–139

hierarchies 158
measures 118–122, 147
operators 123
projection techniques 145
queries

creating 141–149
structure 142–149

SWITCH statement 129–130
syntax 117, 122

Database Management Systems (DBMS)
connecting to 18

databases

Access
connecting to 12

connecting to and importing from 2–24
Oracle

connecting to 17–18
SQL Server

connecting to 5–11
importing data from 93–97

SQL Server Analysis Services
connecting to 13–17

data filters 74–79, 193–198
options 195–196
PivotCharts 220–221
PivotTables 193–198
slicers 197–198
timelines 198

data models 3, 51, 87–170, 171
advantages of 89–90
calculated columns 117–118, 128, 158
composition of 90
creating 87–108
data types 122–123, 189
DAX formulas 116–141
DAX queries 141–149
Excel formulas 149–152
facts about 91–92
for decision making 199
hierarchies

creating 152–159
KPIs 160–163
loading data into 68, 91–97
manually entering data into 97–98
measures 118–122, 191–193
naming conventions and descriptions 110

https://calibre-pdf-anchor.a/#a632

optimization for reporting 108–115, 185–192
Perspectives 110–111
Power Pivot interface 88–89
relationships 90, 99–108
specifications and limits 91
synonyms 110
understanding 88–91

Data preview pane 80
data relationships. See relationships
data shaping 32, 73–74, 87
data sources

connecting to 4–5
Access 12
Analysis Services 13–17
Azure 24–26
Database Management Systems 18
folders 21–24
JSON 21
online services 27
Oracle 17–18
SQL Server 5–11
text/CSV 19–20
XML 20

importing from 2–32
linking to data in other 27–30
PivotTables 180
Privacy Levels 30–32
settings 69–70

data transformations 32–79
adding columns 43–44, 56
advanced 53–70
appending queries to files 55–57
applying business rules 71–73
basic 33–37, 39–53

combining files 53–55
date and time 44
designing and implementing 32–70
extracting values 47–48
filtering 74–79
importing data for 33–37
merging columns 48–49
merging queries 57–61
query folding 51–53
rearranging columns 42–43, 61–62
removing columns 46–47
renaming columns 44–45
replacing null values 62
splitting columns 66–67

data types 109, 113, 122, 189
Data View 89
data visualizations 171–238

changing data format to support 73–74
PivotCharts 198–221
PivotTables 171–198
Power BI and 221–232
presentation types 200

data warehouses 33
DATE 131
DATEDIFF 131
date filters 75–76
date functions 130–132
date hierarchies 153–156
date tables 114–115
date transformations 44
DATEVALUE 132
DAX. See Data Analysis Expressions
DAY 132
default query load settings 11

Diagram View 99–100
DISTINCTCOUNT 127
doughnut charts 204
drivers 17, 18
duplicate rows

removing 63

E

EDATE 131
Edit Permissions dialog 70
Edit Table Properties dialog 186
encryption 8
EOMONTH 131
EVALUATE 142, 144
evaluation contexts 123–126, 128
EXACT 133
Excel 1–86

analytics in 3–4
charts 198–221
connecting to sources 4–24
data analysis in 4
data transformations in 32–79
Get & Transform functionality 2, 4–24
importing data 2–32
Power BI and 221–232
publishing from, to Power BI 224–229
Queries & Connections window 36
workbooks

importing from 27
Excel 2016 ribbon 2
Excel Data Models. See data models
Excel formulas

creating 149–152

Excel tables
manually entering data into 97–98

Expanded Column Selector 60
explicit measures 119–121, 190
Extract command 47–48
Extract Transform and Load (ETL) 32

F

fact-based decision making 199
FALSE 129
Field Settings

in PivotTables 181–184
files

appending queries to 55–57
combining 53–55
connecting to and importing from 2, 19–20

file size restrictions 109
FILTER 135–136, 148
Filter Context 124–125
filter functions 134–137
Filter Rows dialog 78
FIND 133
folders

connecting to 21–24
SharePoint 23–24

foreign keys 104
FORMAT 145, 193
Format functions 79
formula bar 38
Formula Bar 89
functions. See also specific functions

aggregate 126–127
counting 127

cube 150–152, 212
custom, invoking 71–72
date and time 130–131
Excel 149–152
filter 134–137
information 134
iterators 128
logical 129–130
other 141
parent and child 140, 158–159
statistical, math, and trig 139–140
text 132–133
time intelligence 138–139

funnel charts 210

G

Get Data function 4
Get External Data functions 142
Get & Transform functionality 2, 91

connecting to sources 4–24
Group By dialog 74–75

H

HAVING clause 148
Hide From Client Tools 110, 187–188
hierarchies 90

business 156–157
creating 152–159
date 153–156
managing 157
parent-child 158–159
resolving issues with 158–159

histograms 215–216

HOUR 132

I

IF 129
IFERROR 129
IF statements 72–73
implicit measures 120–121
Import Data dialog 15, 34–35, 51
incomplete data 80–81
index columns 73
information functions 134
Invoke Custom Function dialog 72
iterators 128

J

Join Kinds 58–59
JSON (JavaScript Object Notation)

connecting to 21

K

key performance indicators (KPIs) 90
actual-to-target values 162
actual value 160
creating 160–163
measures to support 160
target value 161–162

L

LEFT 133
LEN 133
line charts 203–204

linked tables 98
logical functions 129–130
logic centralization 90
logic operators 123
LOOKUPVALUE 134

M

Manage Parameters dialog 77, 78
many-to-many relationships 102
map charts 208–209
math functions 139–140
MAX 126
MAXX 128
measures 118–122, 147

calculated 192–193
explicit 119–121, 190
formatting 191–193
implicit 120–121
names for 119
query scoped 147
to support KPIs 160

memory optimizations 109
Merge function 48–49, 48–52, 57–61
Microsoft Access. See Access
Microsoft Excel. See Excel
Microsoft SQL Server. See SQL Server
MID 133
MIN 126
MINUTE 132
MINX 128
M language 30, 33, 41
MONTH 132
Move PivotTable command 179

N

naming conventions 110, 119
Native Database Query 6, 7
Native Query dialog 52
NOT 129
NOW 131
null values

replacing 62
numeric filters 75

O

Office 365 109
Office Data Connection Files 14–15
OneDrive for Business 230
online services

connecting to 27
operators

DAX 123
OR 129, 148
Oracle databases

connecting to 17–18
ORDER BY clause 143
Outline Form

for PivotTables 178

P

parameters 76–79
parent-child relationships 158–159
parent functions 140
parenthesis operator 123
Pareto charts 216
permissions 70

Perspectives 90, 110–111
pie charts 204
PivotCharts 3, 198–221

data filtering 220–221
formatting 217–220
introduction to 198
selecting 199–202
types 199–217

area charts 206–207
bar charts 205
box and whisker plots 216–217
bubble charts 207
column charts 202–203
combo charts 205–206
doughnut 204
funnel charts 210
histograms 215–216
line charts 203–204
map charts 208–209
pie 204
radar charts 209–210
scatter plots 207–208
stock charts 208
sunburst charts 213–214
treemap charts 210–213
waterfall 217

pivot data 83
PivotTable Fields pane 174–175
PivotTables 3, 89, 91, 99, 171–198

changing source for 180
changing views 180–181
Connection Properties 180
consuming data via 149
converting to cube functions 212

creating 172–174
data filtering 193–198
data model optimization 185–192
formatting 172–179

general commands 179–181
layout and styling 176–179
measures 191–193
values 181–185

grouping and summarizing data 198
introduction to 171
naming 176
overview 172–175
populating 175–176
refreshing 179–180
Report Layout Forms 178
shortcomings of 149
slicers 197–198, 212
treemap 211
with implicit and explicit measures 120–121

Power BI 4
account 222
data manipulation in 232
desktop 222
Embedded 223–224
import Excel data from 224–231
import from 229–231
interacting with 221–232
Mobile 223
overview 222–224
Publisher for Excel 231
publishing from Excel to 224–229
Service 222–223

Power Maps 3
Power Pivot 3–4

https://calibre-pdf-anchor.a/#a632

Diagram View 99–100
interface 88–89
loading data to data models from 91–97

Power PivotTables 91
Power Query 2, 33

Blank Query 30
Internationalization 19–20
M language 33

Power View 3
pre-aggregated data 74–75
primary keys 104
Privacy Levels 30–32, 70
projection 145

Q

queries
across tables 104
appending to files 55–57
Blank Query 30
DAX 141–149
deleting 63, 70
duplicating 70
management of 69–70
merging 57–61
moving to groups 50–51
referenced 70

Query Dependencies 63
Query Editor 30, 188

Advanced Editor 45, 49
data transformations with 32–79
data types 41–42
default query load settings 11
overview 37–38

query folding 51–53
Query Options 105
query scoped measures 147
Query Settings 40

R

radar charts 209–210
Recent Sources 70
referenced queries 70
referential integrity 104
refreshable tables 98
Refresh All command 179
Refresh command 179
RELATED 148, 187
related columns 101
related tables 100
relationship columns 105
relationships 90

creating 100
automatic 104–105
manual 106–108

defined 99
direction 101
managing 99–108
missing 107
multiple, between tables 103–104
overview of 100–102
parent-child 158–159
requirements for 102
unsupported 102–103

REPLACE 133
Report Layout Forms 178
reports

data received as 81–83
model optimization for 108–115

ribbon 88
RIGHT 133
ROLLUP 146
Row Context 123–124, 126
row limit 3, 89
rows

filtering 77–78
formatting, in PivotTables 183–184
removing duplicate 63

S

SAMEPERIODLASTYEAR 138
scatter plots 207–208
SEARCH 133
SECOND 132
self-joins 103
SharePoint folders

connecting to 23–24
slicers 197–198, 212
Sort By columns 111–112
Split function 66
SQL Server

connecting to 5–11
importing data from 93–97
user credentials 8
Windows-based credentials 7

SQL Server Analysis Services (SSAS) 13–17, 149
SQL Server Reporting Services (SSRS) 116
START AT clause 143
statistical functions 139–140
stock charts 208

https://calibre-pdf-anchor.a/#a632

SUBSTITUTE 133
SUM 126
summarization methods 113
SUMMARIZE 144–149
Summarize By Property 190
SUMMARIZECOLUMNS 147
SUMX 128
sunburst charts 213–214
SWITCH statement 129–130
synonyms 110

T

tab-delimited files 19–20
Table Expand function 60
Table Import Wizard 94, 142
tables 90. See also Excel tables; See also PivotTables

date 114–115
hiding 110–111
linked 98
querying across 104
refreshable 98
related 100
relationships 99–108
renaming 188–189

Tabular Form
for PivotTables 178

target value calculation 161–162
text concatenation operator 123
Text/CSV data sources

connecting to 19–20
text filters 75–76
text functions 132–133
TIME 131

time functions 130–132
time intelligence functions 138–139
timelines 198
time transformations 44
TIMEVALUE 132
TODAY 131
TOTALMTD 138
TOTALQTD 138
TOTALYTD 138
transformations. See data transformations
treemap charts 210–213
trig functions 139–140
TRIM 133
TRUE 129
T-SQL statements 142

U

unpivot data 81–83
UPPERCASE transform M code 68–69
USERELATIONSHIP function 136

V

VALUE 133
Value Fields Settings dialog box 181–183
View Native Query 52
visualizations. See data visualizations
VLOOKUP() function 3, 99

W

waterfall charts 217
WEEKDAY 132
WEEKNUM 132

workbook size optimizer 109

X

XML (eXtensible Markup Language) data sources
connecting to 20

xVelocity 3
xVelocity Engine 89

Y

YEAR 132

Z

Code Snippets

Many titles include programming code or configuration examples. To
optimize the presentation of these elements, view the eBook in single-
column, landscape mode and adjust the font size to the smallest setting. In
addition to presenting code and configurations in the reflowable text format,
we have included images of the code that mimic the presentation found in
the print book; therefore, where the reflowable format may compromise the
presentation of the code listing, you will see a “Click here to view code
image” link. Click the link to view the print-fidelity code image. To return
to the previous page viewed, click the Back button on your device or app.

	Title Page
	Copyright Page
	Dedication Page
	Contents at a Glance
	Contents
	Acknowledgements
	Introduction
	Organization of this book
	Microsoft certifications
	Microsoft Virtual Academy
	Quick access to online references
	Errata, updates, & book support
	Stay in touch
	Important: How to use this book to study for the exam

	Chapter 1 Consume and transform data by using Microsoft Excel
	Skill 1.1: Import from data sources
	Connect to and import from databases, files, and folders
	Connect to Microsoft SQL Azure and Big Data
	Import from Excel workbooks
	Link to data from other sources
	Privacy Levels

	Skill 1.2: Perform data transformations
	Design and implement basic and advanced transformations
	Apply business rules
	Change data format to support visualization
	Filter data
	Format data

	Skill 1.3: Cleanse data
	Manage incomplete data
	Handle data received as a report

	Thought experiment
	Thought experiment answers
	Chapter summary

	Chapter 2 Model data
	Skill 2.1: Create and optimize data models
	Understanding the Excel data model
	Get & Transform
	Manually enter data
	Manage data relationships
	Optimize models for reporting

	Skill 2.2: Create calculated columns, measures, and tables
	Create DAX formulas
	Create DAX queries
	Create Excel formulas

	Skill 2.3: Create Hierarchies
	Create date hierarchies
	Create business hierarchies
	Resolve hierarchy issues

	Skill 2.4: Create Performance KPIs
	Calculate the actual value
	Calculate the target value
	Calculate actual-to-target values

	Thought experiments
	Thought experiment answers
	Chapter summary

	Chapter 3 Visualize data
	Skill 3.1: Create and manage PivotTables
	Format PivotTables
	Format calculated measures
	Filter data
	Group and summarize data

	Skill 3.2: Create and manage PivotCharts
	Select a chart type
	Format PivotCharts
	Filter data

	Skill 3.3: Interact with Power BI
	Power BI overview
	Import Excel data from Power BI
	Manipulate Excel data in Power BI

	Thought experiment
	Thought experiment answers
	Chapter summary

	Index
	Code Snippets

